Esempio n. 1
0
    def test_weighted_sum_operator(self, num_state_qubits, weights, input_x,
                                   result):
        """ weighted sum operator test """
        # initialize weighted sum operator factory
        warnings.filterwarnings('ignore', category=DeprecationWarning)
        sum_op = WeightedSumOperator(num_state_qubits, weights)
        warnings.filterwarnings('always', category=DeprecationWarning)

        # initialize circuit
        q = QuantumRegister(num_state_qubits +
                            sum_op.get_required_sum_qubits(weights))
        if sum_op.required_ancillas() > 0:
            q_a = QuantumRegister(sum_op.required_ancillas())
            qc = QuantumCircuit(q, q_a)
        else:
            q_a = None
            qc = QuantumCircuit(q)

        # set initial state
        for i, x in enumerate(input_x):
            if x == 1:
                qc.x(q[i])

        # build circuit
        sum_op.build(qc, q, q_a)

        # run simulation
        job = execute(qc,
                      BasicAer.get_backend('statevector_simulator'),
                      shots=1)

        num_results = 0
        value = None
        for i, s_a in enumerate(job.result().get_statevector()):
            if np.abs(s_a)**2 >= 1e-6:
                num_results += 1
                b_value = '{0:b}'.format(i).rjust(qc.width(), '0')
                b_sum = b_value[(-len(q)):(-num_state_qubits)]
                value = int(b_sum, 2)

        # make sure there is only one result with non-zero amplitude
        self.assertEqual(num_results, 1)

        # compare to precomputed solution
        self.assertEqual(value, result)
    def test_conditional_value_at_risk(self, simulator):

        # define backend to be used
        backend = BasicAer.get_backend(simulator)

        # set problem parameters
        n_z = 2
        z_max = 2
        z_values = np.linspace(-z_max, z_max, 2 ** n_z)
        p_zeros = [0.15, 0.25]
        rhos = [0.1, 0.05]
        lgd = [1, 2]
        K = len(p_zeros)
        alpha = 0.05

        # set var value
        var = 2
        var_prob = 0.961940

        # determine number of qubits required to represent total loss
        n_s = WeightedSumOperator.get_required_sum_qubits(lgd)

        # create circuit factory (add Z qubits with weight/loss 0)
        agg = WeightedSumOperator(n_z + K, [0] * n_z + lgd)

        # define linear objective
        breakpoints = [0, var]
        slopes = [0, 1]
        offsets = [0, 0]  # subtract VaR and add it later to the estimate
        f_min = 0
        f_max = 3 - var
        c_approx = 0.25

        # construct circuit factory for uncertainty model (Gaussian Conditional Independence model)
        u = GCI(n_z, z_max, p_zeros, rhos)

        cvar_objective = PwlObjective(
            agg.num_sum_qubits,
            0,
            2 ** agg.num_sum_qubits - 1,  # max value that can be reached by the qubit register (will not always be reached)
            breakpoints,
            slopes,
            offsets,
            f_min,
            f_max,
            c_approx
        )

        multivariate_cvar = MultivariateProblem(u, agg, cvar_objective)

        num_qubits = multivariate_cvar.num_target_qubits
        num_ancillas = multivariate_cvar.required_ancillas()

        q = QuantumRegister(num_qubits, name='q')
        q_a = QuantumRegister(num_ancillas, name='q_a')
        qc = QuantumCircuit(q, q_a)

        multivariate_cvar.build(qc, q, q_a)

        job = execute(qc, backend=backend)

        # evaluate resulting statevector
        value = 0
        for i, a in enumerate(job.result().get_statevector()):
            b = ('{0:0%sb}' % multivariate_cvar.num_target_qubits).format(i)[-multivariate_cvar.num_target_qubits:]
            am = np.round(np.real(a), decimals=4)
            if np.abs(am) > 1e-6 and b[0] == '1':
                value += am ** 2

        # normalize and add VaR to estimate
        value = multivariate_cvar.value_to_estimation(value)
        normalized_value = value / (1.0 - var_prob) + var

        # compare to precomputed solution
        self.assertEqual(0.0, np.round(normalized_value - 3.3796, decimals=4))
Esempio n. 3
0
    def test_asian_barrier_spread(self):
        """Test the asian barrier spread model."""
        try:
            from qiskit.aqua.circuits import WeightedSumOperator, FixedValueComparator as Comparator
            from qiskit.aqua.components.uncertainty_problems import (
                UnivariatePiecewiseLinearObjective as PwlObjective,
                MultivariateProblem)
            from qiskit.aqua.components.uncertainty_models import MultivariateLogNormalDistribution
        except ImportError:
            import warnings
            warnings.warn(
                'Qiskit Aqua is not installed, skipping the application test.')
            return

        # number of qubits per dimension to represent the uncertainty
        num_uncertainty_qubits = 2

        # parameters for considered random distribution
        spot_price = 2.0  # initial spot price
        volatility = 0.4  # volatility of 40%
        interest_rate = 0.05  # annual interest rate of 5%
        time_to_maturity = 40 / 365  # 40 days to maturity

        # resulting parameters for log-normal distribution
        # pylint: disable=invalid-name
        mu = ((interest_rate - 0.5 * volatility**2) * time_to_maturity +
              np.log(spot_price))
        sigma = volatility * np.sqrt(time_to_maturity)
        mean = np.exp(mu + sigma**2 / 2)
        variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
        stddev = np.sqrt(variance)

        # lowest and highest value considered for the spot price; in between,
        # an equidistant discretization is considered.
        low = np.maximum(0, mean - 3 * stddev)
        high = mean + 3 * stddev

        # map to higher dimensional distribution
        # for simplicity assuming dimensions are independent and identically distributed)
        dimension = 2
        num_qubits = [num_uncertainty_qubits] * dimension
        low = low * np.ones(dimension)
        high = high * np.ones(dimension)
        mu = mu * np.ones(dimension)
        cov = sigma**2 * np.eye(dimension)

        # construct circuit factory
        distribution = MultivariateLogNormalDistribution(num_qubits=num_qubits,
                                                         low=low,
                                                         high=high,
                                                         mu=mu,
                                                         cov=cov)

        # determine number of qubits required to represent total loss
        weights = []
        for n in num_qubits:
            for i in range(n):
                weights += [2**i]

        num_sum_qubits = WeightedSumOperator.get_required_sum_qubits(weights)

        # create circuit factoy
        agg = WeightedSumOperator(sum(num_qubits), weights)

        # set the strike price (should be within the low and the high value of the uncertainty)
        strike_price_1 = 3
        strike_price_2 = 4

        # set the barrier threshold
        barrier = 2.5

        # map strike prices and barrier threshold from [low, high] to {0, ..., 2^n-1}
        max_value = 2**num_sum_qubits - 1
        low_ = low[0]
        high_ = high[0]

        mapped_strike_price_1 = (strike_price_1 - dimension*low_) / \
            (high_ - low_) * (2**num_uncertainty_qubits - 1)
        mapped_strike_price_2 = (strike_price_2 - dimension*low_) / \
            (high_ - low_) * (2**num_uncertainty_qubits - 1)
        mapped_barrier = (barrier -
                          low) / (high - low) * (2**num_uncertainty_qubits - 1)

        conditions = []
        for i in range(dimension):
            # target dimension of random distribution and corresponding condition
            conditions += [(i,
                            Comparator(num_qubits[i],
                                       mapped_barrier[i] + 1,
                                       geq=False))]

        # set the approximation scaling for the payoff function
        c_approx = 0.25

        # setup piecewise linear objective fcuntion
        breakpoints = [0, mapped_strike_price_1, mapped_strike_price_2]
        slopes = [0, 1, 0]
        offsets = [0, 0, mapped_strike_price_2 - mapped_strike_price_1]
        f_min = 0
        f_max = mapped_strike_price_2 - mapped_strike_price_1
        bull_spread_objective = PwlObjective(num_sum_qubits, 0, max_value,
                                             breakpoints, slopes, offsets,
                                             f_min, f_max, c_approx)

        # define overall multivariate problem
        asian_barrier_spread = MultivariateProblem(distribution,
                                                   agg,
                                                   bull_spread_objective,
                                                   conditions=conditions)

        num_req_qubits = asian_barrier_spread.num_target_qubits
        num_req_ancillas = asian_barrier_spread.required_ancillas()

        qr = QuantumRegister(num_req_qubits, name='q')
        qr_ancilla = QuantumRegister(num_req_ancillas, name='q_a')
        qc = QuantumCircuit(qr, qr_ancilla)

        asian_barrier_spread.build(qc, qr, qr_ancilla)
        job = execute(qc,
                      backend=BasicAer.get_backend('statevector_simulator'))

        # evaluate resulting statevector
        value = 0
        for i, amplitude in enumerate(job.result().get_statevector()):
            b = ('{0:0%sb}' % asian_barrier_spread.num_target_qubits
                 ).format(i)[-asian_barrier_spread.num_target_qubits:]
            prob = np.abs(amplitude)**2
            if prob > 1e-4 and b[0] == '1':
                value += prob
                # all other states should have zero probability due to ancilla qubits
                if i > 2**num_req_qubits:
                    break

        # map value to original range
        mapped_value = asian_barrier_spread.value_to_estimation(value) / (
            2**num_uncertainty_qubits - 1) * (high_ - low_)
        expected = 0.83188
        self.assertAlmostEqual(mapped_value, expected, places=5)
Esempio n. 4
0
# # tracer les results pour la probabilité par default
# plt.bar(range(K), p_default)
# plt.xlabel('Asset', size=15)
# plt.ylabel('probability (%)', size=15)
# plt.title('Individual Default Probabilities', size=20)
# plt.xticks(range(K), size=15)
# plt.yticks(size=15)
# plt.grid()
# plt.show()

#partie 2 estimation de la perte en utilisant QAE
print("calcul de VaR, Loss et CVar avec le QAE")
print("----------estimation de Expected Loss ------------")

# déterminer le nombre de qubits requis pour représenter la perte totale
n_s = WeightedSumOperator.get_required_sum_qubits(lgd)

# construire le circuit pour realiser la somme pondérée
agg = WeightedSumOperator(n_z + K, [0] * n_z + lgd)

# définition de la fonction Objective
breakpoints = [0]
slopes = [1]
offsets = [0]
f_min = 0
f_max = sum(lgd)
c_approx = 0.25

objective = UnivariatePiecewiseLinearObjective(
    agg.num_sum_qubits,
    0,