Esempio n. 1
0
    def test_qsvm_kernel_binary_via_run_algorithm(self):

        training_input = {'A': np.asarray([[0.6560706, 0.17605998], [0.14154948, 0.06201424],
                                           [0.80202323, 0.40582692], [0.46779595, 0.39946754],
                                           [0.57660199, 0.21821317]]),
                          'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951],
                                           [-0.30119743, -0.11221681], [-0.16479252, -0.08640519],
                                           [0.49156185, -0.3660534]])}

        test_input = {'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544],
                                       [0.08791134, 0.11515506], [0.45988094, 0.32854319],
                                       [0.53015085, 0.41539212]]),
                      'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828],
                                       [-0.17323832, -0.49535592], [0.14043268, -0.87869109],
                                       [-0.15046837, -0.47340207]])}

        total_array = np.concatenate((test_input['A'], test_input['B']))

        params = {
            'problem': {'name': 'svm_classification', 'random_seed': self.random_seed},
            'backend': {'shots': self.shots},
            'algorithm': {
                'name': 'QSVM.Kernel'
            }
        }
        backend = BasicAer.get_backend('qasm_simulator')
        algo_input = SVMInput(training_input, test_input, total_array)
        result = run_algorithm(params, algo_input, backend=backend)
        self.assertEqual(result['testing_accuracy'], 0.6)
        self.assertEqual(result['predicted_classes'], ['A', 'A', 'A', 'A', 'A',
                                                       'A', 'B', 'A', 'A', 'A'])
Esempio n. 2
0
    def test_qsvm_kernel_multiclass_all_pairs(self):

        backend = BasicAer.get_backend('qasm_simulator')
        training_input = {'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296],
                                           [0.8690704, 0.70847635]]),
                          'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951],
                                           [0.49156185, -0.3660534]]),
                          'C': np.asarray([[-0.68088231, 0.46824423], [-0.56167659, 0.65270294],
                                           [-0.82139073, 0.29941512]])}

        test_input = {'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544],
                                       [0.48142649, 0.15931707]]),
                      'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828],
                                       [0.06183066, -0.53376975]]),
                      'C': np.asarray([[-0.74561108, 0.27047295], [-0.69942965, 0.11885162],
                                       [-0.66489165, 0.1181712]])}

        total_array = np.concatenate((test_input['A'], test_input['B'], test_input['C']))

        params = {
            'problem': {'name': 'svm_classification', 'random_seed': self.random_seed},
            'algorithm': {
                'name': 'QSVM.Kernel',
            },
            'backend': {'shots': self.shots},
            'multiclass_extension': {'name': 'AllPairs'},
            'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entangler_map': [[0, 1]]}
        }

        algo_input = SVMInput(training_input, test_input, total_array)
        result = run_algorithm(params, algo_input, backend=backend)
        self.assertAlmostEqual(result['testing_accuracy'], 0.444444444, places=4,
                               msg='Please ensure you are using C++ simulator')
        self.assertEqual(result['predicted_classes'], ['A', 'A', 'C', 'A',
                                                       'A', 'A', 'A', 'C', 'C'])
Esempio n. 3
0
    def setUp(self):
        super().setUp()
        self.random_seed = 10598
        self.training_data = {
            'A': np.asarray([[2.95309709, 2.51327412],
                             [3.14159265, 4.08407045]]),
            'B': np.asarray([[4.08407045, 2.26194671],
                             [4.46106157, 2.38761042]])
        }
        self.testing_data = {
            'A': np.asarray([[3.83274304, 2.45044227]]),
            'B': np.asarray([[3.89557489, 0.31415927]])
        }

        self.ref_opt_params = np.array([
            8.84487704, -4.75068608, -3.09321599, 6.15074807, -8.13322889,
            -10.03379214, 5.4842633, -0.80973346, -1.57635832, -9.36628893,
            -5.97527339, -2.65074375, -4.45536502, 10.86323401, 11.39789674,
            3.65879025
        ])
        self.ref_train_loss = 0.35346867
        self.ref_prediction_a_probs = [[0.55273438, 0.44726562]]
        self.ref_prediction_a_label = [0]

        self.svm_input = SVMInput(self.training_data, self.testing_data)
Esempio n. 4
0
    def setUp(self):
        super().setUp()
        self.random_seed = 10598
        self.training_data = {
            'A': np.asarray([[2.95309709, 2.51327412],
                             [3.14159265, 4.08407045]]),
            'B': np.asarray([[4.08407045, 2.26194671],
                             [4.46106157, 2.38761042]])
        }
        self.testing_data = {
            'A': np.asarray([[3.83274304, 2.45044227]]),
            'B': np.asarray([[3.89557489, 0.31415927]])
        }

        self.ref_opt_params = np.array([
            -0.09936191, -1.26202073, 1.30316646, 3.24053034, -0.50731743,
            -0.6853292, 2.57404557, 1.74873317, 1.62238446, -1.83326183,
            4.48499251, 0.21433137, -1.76288916, -0.15767913, 1.86321388,
            0.27216782
        ])
        self.ref_train_loss = 1.4088445273265953
        self.ref_prediction_a_probs = [[0.53710938, 0.46289062]]
        self.ref_prediction_a_label = [0]

        self.svm_input = SVMInput(self.training_data, self.testing_data)
Esempio n. 5
0
    def setUp(self):
        super().setUp()
        self.random_seed = 10598
        self.training_data = {
            'A': np.asarray([[2.95309709, 2.51327412],
                             [3.14159265, 4.08407045]]),
            'B': np.asarray([[4.08407045, 2.26194671],
                             [4.46106157, 2.38761042]])
        }
        self.testing_data = {
            'A': np.asarray([[3.83274304, 2.45044227]]),
            'B': np.asarray([[3.89557489, 0.31415927]])
        }

        # self.ref_opt_params = np.array([-0.09936191, -1.26202073,  1.30316646,  3.24053034, -0.50731743,
        #                                -0.6853292,  2.57404557,  1.74873317,  1.62238446, -1.83326183,
        #                                4.48499251,  0.21433137, -1.76288916, -0.15767913,  1.86321388,
        #                                0.27216782])
        self.ref_opt_params = np.array([
            8.84487704, -4.75068608, -3.09321599, 6.15074807, -8.13322889,
            -10.03379214, 5.4842633, -0.80973346, -1.57635832, -9.36628893,
            -5.97527339, -2.65074375, -4.45536502, 10.86323401, 11.39789674,
            3.65879025
        ])
        # self.ref_train_loss = 1.4088445273265953
        self.ref_train_loss = 0.35346867
        # self.ref_prediction_a_probs = [[0.53710938, 0.46289062]]
        self.ref_prediction_a_probs = [[0.55273438, 0.44726562]]
        self.ref_prediction_a_label = [0]

        self.svm_input = SVMInput(self.training_data, self.testing_data)
Esempio n. 6
0
    def setUp(self):
        super().setUp()
        self.random_seed = 10598
        self.shots = 12000
        np.random.seed(self.random_seed)
        self.training_data = {'A': np.asarray([[2.95309709, 2.51327412],
                                               [3.14159265, 4.08407045]]),
                              'B': np.asarray([[4.08407045, 2.26194671],
                                               [4.46106157, 2.38761042]])}
        self.testing_data = {'A': np.asarray([[3.83274304, 2.45044227]]),
                             'B': np.asarray([[3.89557489, 0.31415927]])}

        self.svm_input = SVMInput(self.training_data, self.testing_data)
Esempio n. 7
0
    def test_classical_multiclass_error_correcting_code(self):
        training_input = {'A': np.asarray([[0.6560706, 0.17605998],
                                           [0.25776033, 0.47628296],
                                           [0.79687342, 0.26933706],
                                           [0.39016555, -0.08469916],
                                           [0.3994399, 0.13601573],
                                           [0.26752049, -0.03978988],
                                           [0.24026485, 0.01953518],
                                           [0.49490503, 0.17239737],
                                           [0.70171827, 0.5323737],
                                           [0.43221576, 0.42357294],
                                           [0.62864856, 0.45504447],
                                           [0.6259567, 0.30917324],
                                           [0.58272403, 0.20760754],
                                           [0.3938784, 0.17184466],
                                           [0.14154948, 0.06201424],
                                           [0.80202323, 0.40582692],
                                           [0.46779595, 0.39946754],
                                           [0.57660199, 0.21821317],
                                           [0.51044761, 0.03699459],
                                           [0.8690704, 0.70847635]]),
                          'B': np.asarray([[0.38857596, -0.33775802],
                                           [0.49946978, -0.48727951],
                                           [-0.30119743, -0.11221681],
                                           [-0.16479252, -0.08640519],
                                           [-0.21808884, -0.56508327],
                                           [-0.14683258, -0.46528508],
                                           [-0.05888195, -0.51474852],
                                           [0.20517435, -0.66839091],
                                           [0.25475584, -0.21239966],
                                           [0.55194854, 0.02789679],
                                           [-0.11542951, -0.54157026],
                                           [0.44625538, -0.49485869],
                                           [-0.14609118, -0.60719757],
                                           [0.18121305, -0.1922198],
                                           [0.19283785, -0.31798925],
                                           [0.29626405, -0.54563098],
                                           [-0.39044304, -0.36527253],
                                           [-0.29432215, -0.43924164],
                                           [-0.40294517, -0.31381308],
                                           [0.49156185, -0.3660534]]),
                          'C': np.asarray([[-0.68088231, 0.46824423],
                                           [-0.56167659, 0.65270294],
                                           [-0.54323753, 0.67630888],
                                           [-0.57685569, -0.08515631],
                                           [-0.67765364, 0.19654347],
                                           [-0.62129115, 0.22223066],
                                           [-0.78040851, 0.65247848],
                                           [-0.50730279, 0.59898039],
                                           [-0.64275805, 0.63381998],
                                           [-0.72854201, 0.14151325],
                                           [-0.57004437, 0.12344874],
                                           [-0.55215973, 0.74331215],
                                           [-0.60916047, 0.52006917],
                                           [-0.23093745, 1.],
                                           [-0.84025337, 0.5564536],
                                           [-0.66952391, 0.57918859],
                                           [-0.67725082, 0.60439934],
                                           [-1., 0.23715261],
                                           [-0.62933025, 0.19055405],
                                           [-0.82139073, 0.29941512]])}

        test_input = {'A': np.asarray([[0.57483139, 0.47120732],
                                       [0.48372348, 0.25438544],
                                       [0.08791134, 0.11515506],
                                       [0.45988094, 0.32854319],
                                       [0.53015085, 0.41539212],
                                       [0.5073321, 0.47346751],
                                       [0.71081819, 0.19202569],
                                       [1., 0.51698289],
                                       [0.630973, 0.19898666],
                                       [0.48142649, 0.15931707]]),
                      'B': np.asarray([[-0.06048935, -0.48345293],
                                       [-0.01065613, -0.33910828],
                                       [-0.17323832, -0.49535592],
                                       [0.14043268, -0.87869109],
                                       [-0.15046837, -0.47340207],
                                       [-0.39600934, -0.21647957],
                                       [-0.394202, -0.44705385],
                                       [0.15243621, -0.36695163],
                                       [0.06195634, -0.23262325],
                                       [0.06183066, -0.53376975]]),
                      'C': np.asarray([[-0.74561108, 0.27047295],
                                       [-0.69942965, 0.11885162],
                                       [-0.52649891, 0.35265538],
                                       [-0.54345106, 0.13113995],
                                       [-0.57181448, 0.13594725],
                                       [-0.33713329, 0.05095243],
                                       [-0.65741384, 0.477976],
                                       [-0.79986067, 0.41733195],
                                       [-0.73856328, 0.80699537],
                                       [-0.66489165, 0.1181712]])}

        temp = [test_input[k] for k in test_input]
        total_array = np.concatenate(temp)

        params = {
            'problem': {'name': 'svm_classification'},
            'algorithm': {
                'name': 'SVM',
            },
            'multiclass_extension': {'name': 'ErrorCorrectingCode', 'code_size': 5},
        }

        algo_input = SVMInput(training_input, test_input, total_array)

        result = run_algorithm(params, algo_input)
        self.assertEqual(result['testing_accuracy'], 1.0)
        self.assertEqual(result['predicted_classes'],
                         ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B',
                          'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B',
                          'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C'])
Esempio n. 8
0
    def test_classical_binary(self):
        training_input = {'A': np.asarray([[0.6560706, 0.17605998],
                                           [0.25776033, 0.47628296],
                                           [0.79687342, 0.26933706],
                                           [0.39016555, -0.08469916],
                                           [0.3994399, 0.13601573],
                                           [0.26752049, -0.03978988],
                                           [0.24026485, 0.01953518],
                                           [0.49490503, 0.17239737],
                                           [0.70171827, 0.5323737],
                                           [0.43221576, 0.42357294],
                                           [0.62864856, 0.45504447],
                                           [0.6259567, 0.30917324],
                                           [0.58272403, 0.20760754],
                                           [0.3938784, 0.17184466],
                                           [0.14154948, 0.06201424],
                                           [0.80202323, 0.40582692],
                                           [0.46779595, 0.39946754],
                                           [0.57660199, 0.21821317],
                                           [0.51044761, 0.03699459],
                                           [0.8690704, 0.70847635]]),
                          'B': np.asarray([[0.38857596, -0.33775802],
                                           [0.49946978, -0.48727951],
                                           [-0.30119743, -0.11221681],
                                           [-0.16479252, -0.08640519],
                                           [-0.21808884, -0.56508327],
                                           [-0.14683258, -0.46528508],
                                           [-0.05888195, -0.51474852],
                                           [0.20517435, -0.66839091],
                                           [0.25475584, -0.21239966],
                                           [0.55194854, 0.02789679],
                                           [-0.11542951, -0.54157026],
                                           [0.44625538, -0.49485869],
                                           [-0.14609118, -0.60719757],
                                           [0.18121305, -0.1922198],
                                           [0.19283785, -0.31798925],
                                           [0.29626405, -0.54563098],
                                           [-0.39044304, -0.36527253],
                                           [-0.29432215, -0.43924164],
                                           [-0.40294517, -0.31381308],
                                           [0.49156185, -0.3660534]])}

        test_input = {'A': np.asarray([[0.57483139, 0.47120732],
                                       [0.48372348, 0.25438544],
                                       [0.08791134, 0.11515506],
                                       [0.45988094, 0.32854319],
                                       [0.53015085, 0.41539212],
                                       [0.5073321, 0.47346751],
                                       [0.71081819, 0.19202569],
                                       [1., 0.51698289],
                                       [0.630973, 0.19898666],
                                       [0.48142649, 0.15931707]]),
                      'B': np.asarray([[-0.06048935, -0.48345293],
                                       [-0.01065613, -0.33910828],
                                       [-0.17323832, -0.49535592],
                                       [0.14043268, -0.87869109],
                                       [-0.15046837, -0.47340207],
                                       [-0.39600934, -0.21647957],
                                       [-0.394202, -0.44705385],
                                       [0.15243621, -0.36695163],
                                       [0.06195634, -0.23262325],
                                       [0.06183066, -0.53376975]])}

        temp = [test_input[k] for k in test_input]
        total_array = np.concatenate(temp)

        params = {
            'problem': {'name': 'svm_classification'},
            'algorithm': {
                'name': 'SVM',
            }
        }

        algo_input = SVMInput(training_input, test_input, total_array)

        result = run_algorithm(params, algo_input)
        self.assertEqual(result['testing_accuracy'], 1.0)
        self.assertEqual(result['predicted_classes'],
                         ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A',
                          'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B'])