Esempio n. 1
0
    def test_eoh(self):
        SIZE = 2

        temp = np.random.random((2 ** SIZE, 2 ** SIZE))
        h1 = temp + temp.T
        qubit_op = Operator(matrix=h1)

        temp = np.random.random((2 ** SIZE, 2 ** SIZE))
        h1 = temp + temp.T
        evo_op = Operator(matrix=h1)

        state_in = Custom(SIZE, state='random')

        evo_time = 1
        num_time_slices = 100

        eoh = EOH(qubit_op, state_in, evo_op, 'paulis', evo_time, num_time_slices)

        backend = get_aer_backend('statevector_simulator')
        run_config = RunConfig(shots=1, max_credits=10, memory=False)
        quantum_instance = QuantumInstance(backend, run_config, pass_manager=PassManager())
        # self.log.debug('state_out:\n\n')

        ret = eoh.run(quantum_instance)
        self.log.debug('Evaluation result: {}'.format(ret))
    def test_qpe(self, distance):
        self.algorithm = 'QPE'
        self.log.debug('Testing End-to-End with QPE on H2 with inter-atomic distance {}.'.format(distance))
        try:
            driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 {}'.format(distance),
                                 unit=UnitsType.ANGSTROM,
                                 charge=0,
                                 spin=0,
                                 basis='sto3g')
        except QiskitChemistryError:
            self.skipTest('PYSCF driver does not appear to be installed')

        self.molecule = driver.run()
        qubit_mapping = 'parity'
        fer_op = FermionicOperator(
            h1=self.molecule.one_body_integrals, h2=self.molecule.two_body_integrals)
        self.qubit_op = fer_op.mapping(map_type=qubit_mapping,
                                       threshold=1e-10).two_qubit_reduced_operator(2)

        exact_eigensolver = ExactEigensolver(self.qubit_op, k=1)
        results = exact_eigensolver.run()
        self.reference_energy = results['energy']
        self.log.debug(
            'The exact ground state energy is: {}'.format(results['energy']))

        num_particles = self.molecule.num_alpha + self.molecule.num_beta
        two_qubit_reduction = True
        num_orbitals = self.qubit_op.num_qubits + \
            (2 if two_qubit_reduction else 0)

        num_time_slices = 50
        n_ancillae = 9

        state_in = HartreeFock(self.qubit_op.num_qubits, num_orbitals,
                               num_particles, qubit_mapping, two_qubit_reduction)
        iqft = Standard(n_ancillae)

        qpe = QPE(self.qubit_op, state_in, iqft, num_time_slices, n_ancillae,
                  expansion_mode='suzuki',
                  expansion_order=2, shallow_circuit_concat=True)
        backend = qiskit.Aer.get_backend('qasm_simulator')
        run_config = RunConfig(shots=100, max_credits=10, memory=False)
        quantum_instance = QuantumInstance(backend, run_config, pass_manager=PassManager())
        result = qpe.run(quantum_instance)
        
        self.log.debug('eigvals:                  {}'.format(result['eigvals']))
        self.log.debug('top result str label:     {}'.format(result['top_measurement_label']))
        self.log.debug('top result in decimal:    {}'.format(result['top_measurement_decimal']))
        self.log.debug('stretch:                  {}'.format(result['stretch']))
        self.log.debug('translation:              {}'.format(result['translation']))
        self.log.debug('final energy from QPE:    {}'.format(result['energy']))
        self.log.debug('reference energy:         {}'.format(self.reference_energy))
        self.log.debug('ref energy (transformed): {}'.format(
            (self.reference_energy + result['translation']) * result['stretch']))
        self.log.debug('ref binary str label:     {}'.format(decimal_to_binary((self.reference_energy + result['translation']) * result['stretch'],
                                                                               max_num_digits=n_ancillae + 3,
                                                                               fractional_part_only=True)))

        np.testing.assert_approx_equal(
            result['energy'], self.reference_energy, significant=2)
Esempio n. 3
0
    def test_vqe_callback(self):

        tmp_filename = 'vqe_callback_test.csv'
        is_file_exist = os.path.exists(self._get_resource_path(tmp_filename))
        if is_file_exist:
            os.remove(self._get_resource_path(tmp_filename))

        def store_intermediate_result(eval_count, parameters, mean, std):
            with open(self._get_resource_path(tmp_filename), 'a') as f:
                content = "{},{},{:.5f},{:.5f}".format(eval_count, parameters,
                                                       mean, std)
                print(content, file=f, flush=True)

        backend = get_aer_backend('qasm_simulator')
        num_qubits = self.algo_input.qubit_op.num_qubits
        init_state = Zero(num_qubits)
        var_form = RY(num_qubits, 1, initial_state=init_state)
        optimizer = COBYLA(maxiter=3)
        algo = VQE(self.algo_input.qubit_op,
                   var_form,
                   optimizer,
                   'paulis',
                   callback=store_intermediate_result)
        algo.random_seed = 50
        run_config = RunConfig(shots=1024, seed=50)
        quantum_instance = QuantumInstance(backend,
                                           seed_mapper=50,
                                           run_config=run_config)
        algo.run(quantum_instance)

        is_file_exist = os.path.exists(self._get_resource_path(tmp_filename))
        self.assertTrue(is_file_exist, "Does not store content successfully.")

        # check the content
        ref_content = [[
            "1", "[-0.03391886 -1.70850424 -1.53640265 -0.65137839]",
            "-0.59622", "0.01546"
        ],
                       [
                           "2",
                           "[ 0.96608114 -1.70850424 -1.53640265 -0.65137839]",
                           "-0.77452", "0.01692"
                       ],
                       [
                           "3",
                           "[ 0.96608114 -0.70850424 -1.53640265 -0.65137839]",
                           "-0.80327", "0.01519"
                       ]]
        with open(self._get_resource_path(tmp_filename)) as f:
            idx = 0
            for record in f.readlines():
                eval_count, parameters, mean, std = record.split(",")
                self.assertEqual(eval_count.strip(), ref_content[idx][0])
                self.assertEqual(parameters, ref_content[idx][1])
                self.assertEqual(mean.strip(), ref_content[idx][2])
                self.assertEqual(std.strip(), ref_content[idx][3])
                idx += 1
        if is_file_exist:
            os.remove(self._get_resource_path(tmp_filename))
Esempio n. 4
0
    def test_qsvm_kernel_binary_directly(self):

        ref_kernel_training = np.array(
            [[1., 0.85366667, 0.12341667, 0.36408333],
             [0.85366667, 1., 0.11141667, 0.45491667],
             [0.12341667, 0.11141667, 1., 0.667],
             [0.36408333, 0.45491667, 0.667, 1.]])

        ref_kernel_testing = np.array(
            [[0.14316667, 0.18208333, 0.4785, 0.14441667],
             [0.33608333, 0.3765, 0.02316667, 0.15858333]])

        ref_alpha = np.array([0.36064489, 1.49204209, 0.0264953, 1.82619169])
        ref_bias = np.array([-0.03380763])

        ref_support_vectors = np.array([[2.95309709, 2.51327412],
                                        [3.14159265, 4.08407045],
                                        [4.08407045, 2.26194671],
                                        [4.46106157, 2.38761042]])

        backend = get_aer_backend('qasm_simulator')
        num_qubits = 2
        feature_map = SecondOrderExpansion(num_qubits=num_qubits,
                                           depth=2,
                                           entangler_map={0: [1]})
        svm = QSVMKernel(feature_map, self.training_data, self.testing_data,
                         None)
        svm.random_seed = self.random_seed
        run_config = RunConfig(shots=self.shots,
                               max_credits=10,
                               memory=False,
                               seed=self.random_seed)
        quantum_instance = QuantumInstance(backend,
                                           run_config,
                                           seed_mapper=self.random_seed)

        result = svm.run(quantum_instance)
        np.testing.assert_array_almost_equal(result['kernel_matrix_training'],
                                             ref_kernel_training,
                                             decimal=1)
        np.testing.assert_array_almost_equal(result['kernel_matrix_testing'],
                                             ref_kernel_testing,
                                             decimal=1)

        self.assertEqual(len(result['svm']['support_vectors']), 4)
        np.testing.assert_array_almost_equal(result['svm']['support_vectors'],
                                             ref_support_vectors,
                                             decimal=4)

        np.testing.assert_array_almost_equal(result['svm']['alphas'],
                                             ref_alpha,
                                             decimal=4)
        np.testing.assert_array_almost_equal(result['svm']['bias'],
                                             ref_bias,
                                             decimal=4)

        self.assertEqual(result['testing_accuracy'], 0.5)
Esempio n. 5
0
    def test_vqe_2_iqpe(self):
        backend = get_aer_backend('qasm_simulator')
        num_qbits = self.algo_input.qubit_op.num_qubits
        var_form = RYRZ(num_qbits, 3)
        optimizer = SPSA(max_trials=10)
        # optimizer.set_options(**{'max_trials': 500})
        algo = VQE(self.algo_input.qubit_op, var_form, optimizer, 'paulis')
        quantum_instance = QuantumInstance(backend)
        result = algo.run(quantum_instance)

        self.log.debug('VQE result: {}.'.format(result))

        self.ref_eigenval = -1.85727503

        num_time_slices = 50
        num_iterations = 11

        state_in = VarFormBased(var_form, result['opt_params'])
        iqpe = IQPE(self.algo_input.qubit_op,
                    state_in,
                    num_time_slices,
                    num_iterations,
                    paulis_grouping='random',
                    expansion_mode='suzuki',
                    expansion_order=2,
                    shallow_circuit_concat=True)
        run_config = RunConfig(shots=100, max_credits=10, memory=False)
        quantum_instance = QuantumInstance(backend,
                                           run_config,
                                           pass_manager=PassManager(),
                                           seed_mapper=self.random_seed)
        result = iqpe.run(quantum_instance)

        self.log.debug('top result str label:         {}'.format(
            result['top_measurement_label']))
        self.log.debug('top result in decimal:        {}'.format(
            result['top_measurement_decimal']))
        self.log.debug('stretch:                      {}'.format(
            result['stretch']))
        self.log.debug('translation:                  {}'.format(
            result['translation']))
        self.log.debug('final eigenvalue from QPE:    {}'.format(
            result['energy']))
        self.log.debug('reference eigenvalue:         {}'.format(
            self.ref_eigenval))
        self.log.debug('ref eigenvalue (transformed): {}'.format(
            (self.ref_eigenval + result['translation']) * result['stretch']))
        self.log.debug('reference binary str label:   {}'.format(
            decimal_to_binary((self.ref_eigenval + result['translation']) *
                              result['stretch'],
                              max_num_digits=num_iterations + 3,
                              fractional_part_only=True)))

        np.testing.assert_approx_equal(self.ref_eigenval,
                                       result['energy'],
                                       significant=2)
    def test_qsvm_variational_directly(self):
        np.random.seed(self.random_seed)
        backend = get_aer_backend('qasm_simulator')

        num_qubits = 2
        optimizer = SPSA(max_trials=10,
                         save_steps=1,
                         c0=4.0,
                         skip_calibration=True)
        feature_map = SecondOrderExpansion(num_qubits=num_qubits, depth=2)
        var_form = RYRZ(num_qubits=num_qubits, depth=3)

        svm = QSVMVariational(optimizer, feature_map, var_form,
                              self.training_data, self.testing_data)
        svm.random_seed = self.random_seed
        run_config = RunConfig(shots=1024,
                               max_credits=10,
                               memory=False,
                               seed=self.random_seed)
        quantum_instance = QuantumInstance(backend,
                                           run_config,
                                           seed_mapper=self.random_seed)
        result = svm.run(quantum_instance)

        np.testing.assert_array_almost_equal(result['opt_params'],
                                             self.ref_opt_params,
                                             decimal=4)
        np.testing.assert_array_almost_equal(result['training_loss'],
                                             self.ref_train_loss,
                                             decimal=8)

        self.assertEqual(result['testing_accuracy'], 1.0)

        file_path = self._get_resource_path('qsvm_variational_test.npz')
        svm.save_model(file_path)

        self.assertTrue(os.path.exists(file_path))

        loaded_svm = QSVMVariational(optimizer, feature_map, var_form,
                                     self.training_data, None)
        loaded_svm.load_model(file_path)

        np.testing.assert_array_almost_equal(loaded_svm.ret['opt_params'],
                                             self.ref_opt_params,
                                             decimal=4)

        loaded_test_acc = loaded_svm.test(svm.test_dataset[0],
                                          svm.test_dataset[1],
                                          quantum_instance)
        self.assertEqual(result['testing_accuracy'], loaded_test_acc)

        if os.path.exists(file_path):
            try:
                os.remove(file_path)
            except:
                pass
Esempio n. 7
0
    def test_iqpe(self, qubitOp, simulator):
        self.algorithm = 'IQPE'
        self.log.debug('Testing IQPE')

        self.qubitOp = qubitOp

        exact_eigensolver = ExactEigensolver(self.qubitOp, k=1)
        results = exact_eigensolver.run()

        w = results['eigvals']
        v = results['eigvecs']

        self.qubitOp.to_matrix()
        np.testing.assert_almost_equal(
            self.qubitOp.matrix @ v[0],
            w[0] * v[0]
        )
        np.testing.assert_almost_equal(
            expm(-1.j * sparse.csc_matrix(self.qubitOp.matrix)) @ v[0],
            np.exp(-1.j * w[0]) * v[0]
        )

        self.ref_eigenval = w[0]
        self.ref_eigenvec = v[0]
        self.log.debug('The exact eigenvalue is:       {}'.format(self.ref_eigenval))
        self.log.debug('The corresponding eigenvector: {}'.format(self.ref_eigenvec))

        num_time_slices = 50
        num_iterations = 6
        state_in = Custom(self.qubitOp.num_qubits, state_vector=self.ref_eigenvec)
        iqpe = IQPE(self.qubitOp, state_in, num_time_slices, num_iterations,
                    expansion_mode='suzuki', expansion_order=2, shallow_circuit_concat=True)

        backend = get_aer_backend(simulator)
        run_config = RunConfig(shots=100, max_credits=10, memory=False)
        quantum_instance = QuantumInstance(backend, run_config, pass_manager=PassManager())

        result = iqpe.run(quantum_instance)

        self.log.debug('top result str label:         {}'.format(result['top_measurement_label']))
        self.log.debug('top result in decimal:        {}'.format(result['top_measurement_decimal']))
        self.log.debug('stretch:                      {}'.format(result['stretch']))
        self.log.debug('translation:                  {}'.format(result['translation']))
        self.log.debug('final eigenvalue from IQPE:   {}'.format(result['energy']))
        self.log.debug('reference eigenvalue:         {}'.format(self.ref_eigenval))
        self.log.debug('ref eigenvalue (transformed): {}'.format(
            (self.ref_eigenval + result['translation']) * result['stretch'])
        )
        self.log.debug('reference binary str label:   {}'.format(decimal_to_binary(
            (self.ref_eigenval.real + result['translation']) * result['stretch'],
            max_num_digits=num_iterations + 3,
            fractional_part_only=True
        )))

        np.testing.assert_approx_equal(result['energy'], self.ref_eigenval.real, significant=2)
Esempio n. 8
0
    def test_grover(self,
                    dimacs_file,
                    incremental,
                    num_iterations,
                    mct_mode,
                    simulator,
                    optimization='off'):
        dimacs_file = self._get_resource_path(dimacs_file)
        # get ground-truth
        with open(dimacs_file) as f:
            buf = f.read()
        if incremental:
            self.log.debug(
                'Testing incremental Grover search on SAT problem instance: \n{}'
                .format(buf, ))
        else:
            self.log.debug(
                'Testing Grover search with {} iteration(s) on SAT problem instance: \n{}'
                .format(
                    num_iterations,
                    buf,
                ))
        header = buf.split('\n')[0]
        self.assertGreaterEqual(header.find('solution'), 0,
                                'Ground-truth info missing.')
        self.groundtruth = [
            ''.join([
                '1' if i > 0 else '0' for i in sorted(
                    [int(v) for v in s.strip().split() if v != '0'], key=abs)
            ])[::-1] for s in header.split('solutions:' if header.find(
                'solutions:') >= 0 else 'solution:')[-1].split(',')
        ]
        backend = get_aer_backend(simulator)
        oracle = LogicExpressionOracle(buf, optimization=optimization)
        grover = Grover(oracle,
                        num_iterations=num_iterations,
                        incremental=incremental,
                        mct_mode=mct_mode)
        run_config = RunConfig(shots=1000, max_credits=10, memory=False)
        quantum_instance = QuantumInstance(backend, run_config)

        ret = grover.run(quantum_instance)

        self.log.debug('Ground-truth Solutions: {}.'.format(self.groundtruth))
        self.log.debug('Top measurement:        {}.'.format(
            ret['top_measurement']))
        if ret['oracle_evaluation']:
            self.assertIn(ret['top_measurement'], self.groundtruth)
            self.log.debug('Search Result:          {}.'.format(ret['result']))
        else:
            self.assertEqual(self.groundtruth, [''])
            self.log.debug('Nothing found.')
    def test_end2end_h2(self, name, optimizer, backend, mode, shots):

        if optimizer == 'COBYLA':
            optimizer = COBYLA()
            optimizer.set_options(maxiter=1000)
        elif optimizer == 'SPSA':
            optimizer = SPSA(max_trials=2000)

        ryrz = RYRZ(self.algo_input.qubit_op.num_qubits, depth=3, entanglement='full')
        vqe = VQE(self.algo_input.qubit_op, ryrz, optimizer, mode, aux_operators=self.algo_input.aux_ops)
        run_config = RunConfig(shots=shots, max_credits=10, memory=False)
        quantum_instance = QuantumInstance(backend, run_config)
        results = vqe.run(quantum_instance)
        self.assertAlmostEqual(results['energy'], self.reference_energy, places=4)
Esempio n. 10
0
    def setUp(self):
        super().setUp()
        self.random_seed = 10598

        qr = QuantumRegister(2)
        cr = ClassicalRegister(2)
        qc = QuantumCircuit(qr, cr)
        qc.h(qr[0])
        qc.cx(qr[0], qr[1])
        # Ensure qubit 0 is measured before qubit 1
        qc.barrier(qr)
        qc.measure(qr[0], cr[0])
        qc.barrier(qr)
        qc.measure(qr[1], cr[1])

        self.qc = qc
        self.backend = get_aer_backend('qasm_simulator')
        self.run_config = RunConfig(seed=self.random_seed, shots=1024)
Esempio n. 11
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            seed_mapper=None,
            pass_manager=None,
            memory=False):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        seed_mapper (int): random seed for swapper mapper
        qobj_id (int): identifier for the generated qobj
        pass_manager (PassManager): a pass manger for the transpiler pipeline
        memory (bool): if True, per-shot measurement bitstrings are returned as well

    Returns:
        Qobj: the qobj to be run on the backends

    Raises:
        QiskitError: if the desired options are not supported by backend
    """
    if config:
        warnings.warn(
            'The `config` argument is deprecated and '
            'does not do anything', DeprecationWarning)

    circuits = transpiler.transpile(circuits, backend, basis_gates,
                                    coupling_map, initial_layout, seed_mapper,
                                    pass_manager)

    # step 4: Making a qobj
    run_config = RunConfig()

    if seed:
        run_config.seed = seed
    if shots:
        run_config.shots = shots
    if max_credits:
        run_config.max_credits = max_credits
    if memory:
        run_config.memory = memory
    qobj = circuits_to_qobj(circuits,
                            user_qobj_header=QobjHeader(),
                            run_config=run_config,
                            qobj_id=qobj_id)

    return qobj
Esempio n. 12
0
    def __init__(self, backend, run_config=None, initial_layout=None, pass_manager=None, seed_mapper=None,
                 backend_options=None, noise_model=None, timeout=None, wait=5, circuit_cache=None,
                 skip_qobj_validation=False):
        """Constructor.

        Args:
            backend (BaseBackend): instance of selected backend
            run_config (RunConfig): the run config see https://github.com/Qiskit/qiskit-terra/blob/master/qiskit/qobj/run_config.py
            initial_layout (dict): initial layout of qubits in mapping
            pass_manager (PassManager): pass manager to handle how to compile the circuits
            seed_mapper (int): the random seed for circuit mapper
            backend_options (dict): all config setting for backend
            noise_model (qiskit.provider.aer.noise.noise_model.NoiseModel): noise model for simulator
            timeout (float or None): seconds to wait for job. If None, wait indefinitely.
            wait (float): seconds between queries to result
            circuit_cache (CircuitCache): A CircuitCache to use when calling compile_and_run_circuits
            skip_qobj_validation (bool): Bypass Qobj validation to decrease submission time
        """
        self._backend = backend
        # setup run config
        if run_config is None:
            run_config = RunConfig(shots=1024, max_credits=10, memory=False)

        if getattr(run_config, 'shots', None) is not None:
            if self.is_statevector and run_config.shots == 1:
                logger.info("statevector backend only works with shot=1, change "
                            "shots from {} to 1.".format(run_config.shots))
                run_config.shots = 1

        if getattr(run_config, 'memory', None) is not None:
            if not self.is_simulator and run_config.memory is True:
                logger.info("The memory flag only supports simulator rather than real device. "
                            "Change it to from {} to False.".format(run_config.memory))
                run_config.memory = False
        self._run_config = run_config

        # setup backend config
        coupling_map = getattr(backend.configuration(), 'coupling_map', None)
        # TODO: basis gates will be [str] rather than comma-separated str
        basis_gates = backend.configuration().basis_gates
        if isinstance(basis_gates, list):
            basis_gates = ','.join(basis_gates)

        self._backend_config = {
            'basis_gates': basis_gates,
            'coupling_map': coupling_map
        }

        # setup noise config
        noise_config = None
        if noise_model is not None:
            if is_aer_provider(self._backend):
                if not self.is_statevector:
                    noise_config = noise_model
                else:
                    logger.info("The noise model can be only used with Aer qasm simulator. "
                                "Change it to None.")
            else:
                logger.info("The noise model can be only used with Qiskit Aer. "
                            "Please install it.")
        self._noise_config = {} if noise_config is None else {'noise_model': noise_config}

        # setup compile config
        self._compile_config = {
            'pass_manager': pass_manager,
            'initial_layout': initial_layout,
            'seed_mapper': seed_mapper,
            'qobj_id': None
        }

        # setup job config
        self._qjob_config = {'timeout': timeout} if self.is_local \
            else {'timeout': timeout, 'wait': wait}

        # setup backend options for run
        self._backend_options = {}
        if isinstance(self._backend.provider(), IBMQProvider):
            logger.info("backend_options can not used with the backends in IBMQ provider.")
        else:
            self._backend_options = {} if backend_options is None \
                else {'backend_options': backend_options}

        self._shared_circuits = False
        self._circuit_summary = False
        self._circuit_cache = circuit_cache
        self._skip_qobj_validation = skip_qobj_validation

        logger.info(self)
Esempio n. 13
0
    def __init__(self,
                 backend,
                 shots=1024,
                 seed=None,
                 max_credits=10,
                 basis_gates=None,
                 coupling_map=None,
                 initial_layout=None,
                 pass_manager=None,
                 seed_mapper=None,
                 backend_options=None,
                 noise_model=None,
                 timeout=None,
                 wait=5,
                 circuit_cache=None,
                 skip_qobj_validation=False):
        """Constructor.

        Args:
            backend (BaseBackend): instance of selected backend
            shots (int, optional): number of repetitions of each circuit, for sampling
            seed (int, optional): random seed for simulators
            max_credits (int, optional): maximum credits to use
            basis_gates (list[str], optional): list of basis gate names supported by the
                                                target. Default: ['u1','u2','u3','cx','id']
            coupling_map (list[list]): coupling map (perhaps custom) to target in mapping
            initial_layout (dict, optional): initial layout of qubits in mapping
            pass_manager (PassManager, optional): pass manager to handle how to compile the circuits
            seed_mapper (int, optional): the random seed for circuit mapper
            backend_options (dict, optional): all running options for backend, please refer to the provider.
            noise_model (qiskit.provider.aer.noise.noise_model.NoiseModel, optional): noise model for simulator
            timeout (float, optional): seconds to wait for job. If None, wait indefinitely.
            wait (float, optional): seconds between queries to result
            circuit_cache (CircuitCache, optional): A CircuitCache to use when calling compile_and_run_circuits
            skip_qobj_validation (bool, optional): Bypass Qobj validation to decrease submission time
        """
        self._backend = backend
        # setup run config
        run_config = RunConfig(shots=shots, max_credits=max_credits)
        if seed:
            run_config.seed = seed

        if getattr(run_config, 'shots', None) is not None:
            if self.is_statevector and run_config.shots != 1:
                logger.info(
                    "statevector backend only works with shot=1, change "
                    "shots from {} to 1.".format(run_config.shots))
                run_config.shots = 1

        self._run_config = run_config

        # setup backend config
        basis_gates = basis_gates or backend.configuration().basis_gates
        coupling_map = coupling_map or getattr(backend.configuration(),
                                               'coupling_map', None)
        self._backend_config = {
            'basis_gates': basis_gates,
            'coupling_map': coupling_map
        }

        # setup noise config
        noise_config = None
        if noise_model is not None:
            if is_aer_provider(self._backend):
                if not self.is_statevector:
                    noise_config = noise_model
                else:
                    logger.info(
                        "The noise model can be only used with Aer qasm simulator. "
                        "Change it to None.")
            else:
                logger.info(
                    "The noise model can be only used with Qiskit Aer. "
                    "Please install it.")
        self._noise_config = {} if noise_config is None else {
            'noise_model': noise_config
        }

        # setup compile config
        if initial_layout is not None and not isinstance(
                initial_layout, Layout):
            initial_layout = Layout(initial_layout)
        self._compile_config = {
            'pass_manager': pass_manager,
            'initial_layout': initial_layout,
            'seed_mapper': seed_mapper
        }

        # setup job config
        self._qjob_config = {'timeout': timeout} if self.is_local \
            else {'timeout': timeout, 'wait': wait}

        # setup backend options for run
        self._backend_options = {}
        if is_ibmq_provider(self._backend):
            logger.info(
                "backend_options can not used with the backends in IBMQ provider."
            )
        else:
            self._backend_options = {} if backend_options is None \
                else {'backend_options': backend_options}

        self._shared_circuits = False
        self._circuit_summary = False
        self._circuit_cache = circuit_cache
        self._skip_qobj_validation = skip_qobj_validation

        logger.info(self)
Esempio n. 14
0
    def _build_algorithm_from_dict(self, quantum_instance):
        _discover_on_demand()
        self._parser = InputParser(self._params)
        self._parser.parse()
        # before merging defaults attempts to find a provider for the backend in case no
        # provider was passed
        if quantum_instance is None and self._parser.get_section_property(
                JSONSchema.BACKEND, JSONSchema.PROVIDER) is None:
            backend_name = self._parser.get_section_property(
                JSONSchema.BACKEND, JSONSchema.NAME)
            if backend_name is not None:
                self._parser.set_section_property(
                    JSONSchema.BACKEND, JSONSchema.PROVIDER,
                    get_provider_from_backend(backend_name))

        self._parser.validate_merge_defaults()
        logger.debug('Algorithm Input: {}'.format(
            json.dumps(self._parser.get_sections(), sort_keys=True, indent=4)))

        algo_name = self._parser.get_section_property(
            PluggableType.ALGORITHM.value, JSONSchema.NAME)
        if algo_name is None:
            raise AquaError('Missing algorithm name')

        if algo_name not in local_pluggables(PluggableType.ALGORITHM):
            raise AquaError(
                'Algorithm "{0}" missing in local algorithms'.format(
                    algo_name))

        if self._algorithm_input is None:
            input_name = self._parser.get_section_property(
                'input', JSONSchema.NAME)
            if input_name is not None:
                input_params = copy.deepcopy(
                    self._parser.get_section_properties('input'))
                del input_params[JSONSchema.NAME]
                convert_json_to_dict(input_params)
                self._algorithm_input = get_pluggable_class(
                    PluggableType.INPUT, input_name).from_params(input_params)

        algo_params = copy.deepcopy(self._parser.get_sections())
        self._quantum_algorithm = get_pluggable_class(
            PluggableType.ALGORITHM,
            algo_name).init_params(algo_params, self._algorithm_input)
        random_seed = self._parser.get_section_property(
            JSONSchema.PROBLEM, 'random_seed')
        self._quantum_algorithm.random_seed = random_seed

        if isinstance(quantum_instance, QuantumInstance):
            self._quantum_instance = quantum_instance
            return

        backend = None
        if isinstance(quantum_instance, BaseBackend):
            backend = quantum_instance
        elif quantum_instance is not None:
            raise AquaError(
                'Invalid QuantumInstance or BaseBackend parameter {}.'.format(
                    quantum_instance))

        # setup backend
        backend_provider = self._parser.get_section_property(
            JSONSchema.BACKEND, JSONSchema.PROVIDER)
        backend_name = self._parser.get_section_property(
            JSONSchema.BACKEND, JSONSchema.NAME)
        if backend_provider is not None and backend_name is not None:  # quantum algorithm
            backend_cfg = {
                k: v
                for k, v in self._parser.get_section(
                    JSONSchema.BACKEND).items()
                if k not in [JSONSchema.PROVIDER, JSONSchema.NAME]
            }
            # TODO, how to build the noise model from a dictionary?
            backend_cfg['seed_mapper'] = random_seed
            pass_manager = PassManager() if backend_cfg.pop(
                'skip_transpiler', False) else None
            if pass_manager is not None:
                backend_cfg['pass_manager'] = pass_manager

            if backend is None:
                backend = get_backend_from_provider(backend_provider,
                                                    backend_name)

            backend_cfg['backend'] = backend

            # overwrite the basis_gates and coupling_map
            basis_gates = backend_cfg.pop('basis_gates', None)
            if isinstance(basis_gates, str):
                basis_gates = basis_gates.split(',')

            coupling_map = backend_cfg.pop('coupling_map', None)
            if backend.configuration().simulator:
                if basis_gates is not None:
                    backend.configuration().basis_gates = basis_gates
                if coupling_map is not None:
                    backend.configuration().coupling_map = coupling_map
            else:
                logger.warning(
                    "Change basis_gates and coupling_map on a real device is disallowed."
                )

            shots = backend_cfg.pop('shots', 1024)
            seed = random_seed
            max_credits = backend_cfg.pop('max_credits', 10)
            memory = backend_cfg.pop('memory', False)
            run_config = RunConfig(shots=shots,
                                   max_credits=max_credits,
                                   memory=memory)
            if seed is not None:
                run_config.seed = seed
            backend_cfg['run_config'] = run_config

            backend_cfg[
                'skip_qobj_validation'] = self._parser.get_section_property(
                    JSONSchema.PROBLEM, 'skip_qobj_validation')
            use_caching = self._parser.get_section_property(
                JSONSchema.PROBLEM, 'circuit_caching')
            if use_caching:
                deepcopy_qobj = self._parser.get_section_property(
                    JSONSchema.PROBLEM, 'skip_qobj_deepcopy')
                cache_file = self._parser.get_section_property(
                    JSONSchema.PROBLEM, 'circuit_cache_file')
                backend_cfg['circuit_cache'] = CircuitCache(
                    skip_qobj_deepcopy=deepcopy_qobj, cache_file=cache_file)

            self._quantum_instance = QuantumInstance(**backend_cfg)
Esempio n. 15
0
    def load_qobj_from_cache(self, circuits, chunk, run_config=None):
        self.try_loading_cache_from_file()

        if self.try_reusing_qobjs and self.qobjs is not None and len(
                self.qobjs) <= chunk:
            self.mappings.insert(chunk, self.mappings[0])
            self.qobjs.insert(chunk, copy.deepcopy(qobjs[0]))

        for circ_num, input_circuit in enumerate(circuits):

            # If there are too few experiments in the cache, try reusing the first experiment.
            # Only do this for the first chunk. Subsequent chunks should rely on these copies
            # through the deepcopy above.
            if self.try_reusing_qobjs and chunk == 0 and circ_num > 0 and len(self.qobjs[chunk].experiments) <= \
                    circ_num:
                self.qobjs[0].experiments.insert(
                    circ_num, copy.deepcopy(self.qobjs[0].experiments[0]))
                self.mappings[0].insert(circ_num, self.mappings[0][0])

            # Unroll circuit in case of composite gates
            raw_gates = []
            for gate in input_circuit.data:
                if isinstance(gate, CompositeGate):
                    raw_gates += gate.instruction_list()
                else:
                    raw_gates += [gate]
            self.qobjs[chunk].experiments[
                circ_num].header.name = input_circuit.name
            for gate_num, compiled_gate in enumerate(
                    self.qobjs[chunk].experiments[circ_num].instructions):
                if not hasattr(compiled_gate,
                               'params') or len(compiled_gate.params) < 1:
                    continue
                if compiled_gate.name == 'snapshot': continue
                cache_index = self.mappings[chunk][circ_num][gate_num]
                uncompiled_gate = raw_gates[cache_index]

                # Need the 'getattr' wrapper because measure has no 'params' field and breaks this.
                if not len(getattr(compiled_gate, 'params', [])) == len(getattr(uncompiled_gate, 'params', [])) or \
                    not compiled_gate.name == uncompiled_gate.name:
                    raise AquaError(
                        'Gate mismatch at gate {0} ({1}, {2} params) of circuit against gate {3} ({4}, '
                        '{5} params) of cached qobj'.format(
                            cache_index, uncompiled_gate.name,
                            len(uncompiled_gate.params), gate_num,
                            compiled_gate.name, len(compiled_gate.params)))
                compiled_gate.params = np.array(uncompiled_gate.params,
                                                dtype=float).tolist()
        exec_qobj = copy.copy(self.qobjs[chunk])
        if self.skip_qobj_deepcopy:
            exec_qobj.experiments = self.qobjs[chunk].experiments[
                0:len(circuits)]
        else:
            exec_qobj.experiments = copy.deepcopy(
                self.qobjs[chunk].experiments[0:len(circuits)])

        if run_config is None:
            run_config = RunConfig(shots=1024, max_credits=10, memory=False)
        exec_qobj.config = QobjConfig(**run_config.to_dict())
        exec_qobj.config.memory_slots = max(
            experiment.config.memory_slots
            for experiment in exec_qobj.experiments)
        exec_qobj.config.n_qubits = max(
            experiment.config.n_qubits for experiment in exec_qobj.experiments)
        return exec_qobj
Esempio n. 16
0
def build_algorithm_from_dict(params, algo_input=None, backend=None):
    """
        Construct algorithm as named in params, using params and algo_input as input data
        and returning a QuantumAlgorithm and QuantumInstance instance

        Args:
            params (dict): Dictionary of params for algo and dependent objects
            algo_input (AlgorithmInput): Main input data for algorithm. Optional, an algo may run entirely from params
            backend (BaseBackend): Backend object to be used in place of backend name

        Returns:
            Ready-to-run QuantumAlgorithm and QuantumInstance as specified in input parameters. Note that
            no QuantumInstance will be returned if none is specified - None will be returned instead.
        """
    _discover_on_demand()

    inputparser = InputParser(params)
    inputparser.parse()
    # before merging defaults attempts to find a provider for the backend in case no
    # provider was passed
    if backend is None and inputparser.get_section_property(
            JSONSchema.BACKEND, JSONSchema.PROVIDER) is None:
        backend_name = inputparser.get_section_property(
            JSONSchema.BACKEND, JSONSchema.NAME)
        if backend_name is not None:
            inputparser.set_section_property(
                JSONSchema.BACKEND, JSONSchema.PROVIDER,
                get_provider_from_backend(backend_name))

    inputparser.validate_merge_defaults()
    logger.debug('Algorithm Input: {}'.format(
        json.dumps(inputparser.get_sections(), sort_keys=True, indent=4)))

    algo_name = inputparser.get_section_property(PluggableType.ALGORITHM.value,
                                                 JSONSchema.NAME)
    if algo_name is None:
        raise AquaError('Missing algorithm name')

    if algo_name not in local_pluggables(PluggableType.ALGORITHM):
        raise AquaError(
            'Algorithm "{0}" missing in local algorithms'.format(algo_name))

    if algo_input is None:
        input_name = inputparser.get_section_property('input', JSONSchema.NAME)
        if input_name is not None:
            input_params = copy.deepcopy(
                inputparser.get_section_properties('input'))
            del input_params[JSONSchema.NAME]
            convert_json_to_dict(input_params)
            algo_input = get_pluggable_class(
                PluggableType.INPUT, input_name).from_params(input_params)

    algo_params = copy.deepcopy(inputparser.get_sections())
    algorithm = get_pluggable_class(PluggableType.ALGORITHM,
                                    algo_name).init_params(
                                        algo_params, algo_input)
    random_seed = inputparser.get_section_property(JSONSchema.PROBLEM,
                                                   'random_seed')
    algorithm.random_seed = random_seed
    quantum_instance = None
    # setup backend
    backend_provider = inputparser.get_section_property(
        JSONSchema.BACKEND, JSONSchema.PROVIDER)
    backend_name = inputparser.get_section_property(JSONSchema.BACKEND,
                                                    JSONSchema.NAME)
    if backend_provider is not None and backend_name is not None:  # quantum algorithm
        backend_cfg = {
            k: v
            for k, v in inputparser.get_section(JSONSchema.BACKEND).items()
            if k not in [JSONSchema.PROVIDER, JSONSchema.NAME]
        }
        # TODO, how to build the noise model from a dictionary?
        backend_cfg['seed_mapper'] = random_seed
        pass_manager = PassManager() if backend_cfg.pop(
            'skip_transpiler', False) else None
        if pass_manager is not None:
            backend_cfg['pass_manager'] = pass_manager

        if backend is None or not isinstance(backend, BaseBackend):
            backend = get_backend_from_provider(backend_provider, backend_name)
        backend_cfg['backend'] = backend

        # overwrite the basis_gates and coupling_map
        basis_gates = backend_cfg.pop('basis_gates', None)
        coupling_map = backend_cfg.pop('coupling_map', None)
        if backend.configuration().simulator:
            if basis_gates is not None:
                backend.configuration().basis_gates = basis_gates
            if coupling_map is not None:
                backend.configuration().coupling_map = coupling_map
        else:
            logger.warning(
                "Change basis_gates and coupling_map on a real device is disallowed."
            )

        shots = backend_cfg.pop('shots', 1024)
        seed = random_seed
        max_credits = backend_cfg.pop('max_credits', 10)
        memory = backend_cfg.pop('memory', False)
        run_config = RunConfig(shots=shots,
                               max_credits=max_credits,
                               memory=memory)
        if seed is not None:
            run_config.seed = seed
        backend_cfg['run_config'] = run_config

        backend_cfg['skip_qobj_validation'] = inputparser.get_section_property(
            JSONSchema.PROBLEM, 'skip_qobj_validation')
        use_caching = inputparser.get_section_property(JSONSchema.PROBLEM,
                                                       'circuit_caching')
        if use_caching:
            deepcopy_qobj = inputparser.get_section_property(
                JSONSchema.PROBLEM, 'skip_qobj_deepcopy')
            cache_file = inputparser.get_section_property(
                JSONSchema.PROBLEM, 'circuit_cache_file')
            backend_cfg['circuit_cache'] = CircuitCache(
                skip_qobj_deepcopy=deepcopy_qobj, cache_file=cache_file)

        quantum_instance = QuantumInstance(**backend_cfg)

    # Note that quantum_instance can be None if none is specified
    return algorithm, quantum_instance
Esempio n. 17
0
    def test_qsvm_variational_callback(self):

        tmp_filename = 'qsvm_callback_test.csv'
        is_file_exist = os.path.exists(self._get_resource_path(tmp_filename))
        if is_file_exist:
            os.remove(self._get_resource_path(tmp_filename))

        def store_intermediate_result(eval_count, parameters, cost,
                                      batch_index):
            with open(self._get_resource_path(tmp_filename), 'a') as f:
                content = "{},{},{:.5f},{}".format(eval_count, parameters,
                                                   cost, batch_index)
                print(content, file=f, flush=True)

        np.random.seed(self.random_seed)
        backend = get_aer_backend('qasm_simulator')

        num_qubits = 2
        optimizer = COBYLA(maxiter=3)
        feature_map = SecondOrderExpansion(num_qubits=num_qubits, depth=2)
        var_form = RY(num_qubits=num_qubits, depth=1)

        svm = QSVMVariational(optimizer,
                              feature_map,
                              var_form,
                              self.training_data,
                              self.testing_data,
                              callback=store_intermediate_result)
        svm.random_seed = self.random_seed
        run_config = RunConfig(shots=1024,
                               max_credits=10,
                               memory=False,
                               seed=self.random_seed)
        quantum_instance = QuantumInstance(backend,
                                           run_config,
                                           seed_mapper=self.random_seed)
        svm.run(quantum_instance)

        is_file_exist = os.path.exists(self._get_resource_path(tmp_filename))
        self.assertTrue(is_file_exist, "Does not store content successfully.")

        # check the content
        ref_content = [[
            "0", "[ 0.18863864 -1.08197582  1.74432295  1.29765602]",
            "0.53367", "0"
        ],
                       [
                           "1",
                           "[ 1.18863864 -1.08197582  1.74432295  1.29765602]",
                           "0.57261", "1"
                       ],
                       [
                           "2",
                           "[ 0.18863864 -0.08197582  1.74432295  1.29765602]",
                           "0.47137", "2"
                       ]]
        with open(self._get_resource_path(tmp_filename)) as f:
            idx = 0
            for record in f.readlines():
                eval_count, parameters, cost, batch_index = record.split(",")
                self.assertEqual(eval_count.strip(), ref_content[idx][0])
                self.assertEqual(parameters, ref_content[idx][1])
                self.assertEqual(cost.strip(), ref_content[idx][2])
                self.assertEqual(batch_index.strip(), ref_content[idx][3])
                idx += 1
        if is_file_exist:
            os.remove(self._get_resource_path(tmp_filename))