def test_two_qubit_synthesis_to_directional_cx_from_gate_errors(self):
        """Verify two qubit unitaries are synthesized to match basis gates."""
        # TODO: should make check more explicit e.g. explicitly set gate
        # direction in test instead of using specific fake backend
        backend = FakeVigo()
        conf = backend.configuration()
        qr = QuantumRegister(2)
        coupling_map = CouplingMap(conf.coupling_map)
        triv_layout_pass = TrivialLayout(coupling_map)
        qc = QuantumCircuit(qr)
        qc.unitary(random_unitary(4, seed=12), [0, 1])
        unisynth_pass = UnitarySynthesis(
            basis_gates=conf.basis_gates,
            coupling_map=None,
            backend_props=backend.properties(),
            pulse_optimize=True,
            natural_direction=False,
        )
        pm = PassManager([triv_layout_pass, unisynth_pass])
        qc_out = pm.run(qc)

        unisynth_pass_nat = UnitarySynthesis(
            basis_gates=conf.basis_gates,
            coupling_map=None,
            backend_props=backend.properties(),
            pulse_optimize=True,
            natural_direction=True,
        )

        pm_nat = PassManager([triv_layout_pass, unisynth_pass_nat])
        qc_out_nat = pm_nat.run(qc)
        self.assertEqual(Operator(qc), Operator(qc_out))
        self.assertEqual(Operator(qc), Operator(qc_out_nat))
Esempio n. 2
0
 def test_objective_function(self):
     """Test if ``objective`` functions priorities metrics correctly."""
     qc = QuantumCircuit(4)
     qc.dcx(0, 1)
     qc.cx(2, 3)
     qc.dcx(0, 2)
     qc.cx(1, 3)
     qc.dcx(0, 1)
     qc.cx(2, 3)
     coupling = CouplingMap(FakeLima().configuration().coupling_map)
     dep_opt = BIPMapping(coupling,
                          objective="depth",
                          qubit_subset=[0, 1, 3, 4])(qc)
     err_opt = BIPMapping(
         coupling,
         objective="gate_error",
         qubit_subset=[0, 1, 3, 4],
         backend_prop=FakeLima().properties(),
     )(qc)
     # depth = number of su4 layers (mirrored gates have to be consolidated as single su4 gates)
     pm_ = PassManager(
         [Collect2qBlocks(),
          ConsolidateBlocks(basis_gates=["cx"])])
     dep_opt = pm_.run(dep_opt)
     err_opt = pm_.run(err_opt)
     self.assertLessEqual(dep_opt.depth(), err_opt.depth())
     # count CNOTs after synthesized
     dep_opt = UnitarySynthesis(basis_gates=["cx"])(dep_opt)
     err_opt = UnitarySynthesis(basis_gates=["cx"])(err_opt)
     self.assertGreater(dep_opt.count_ops()["cx"],
                        err_opt.count_ops()["cx"])
    def test_empty_basis_gates(self):
        """Verify when basis_gates is None, we do not synthesize unitaries."""
        qc = QuantumCircuit(1)
        qc.unitary([[0, 1], [1, 0]], [0])

        dag = circuit_to_dag(qc)

        out = UnitarySynthesis(None).run(dag)

        self.assertEqual(out.count_ops(), {"unitary": 1})
    def test_two_qubit_synthesis_to_basis(self, basis_gates):
        """Verify two qubit unitaries are synthesized to match basis gates."""
        bell = QuantumCircuit(2)
        bell.h(0)
        bell.cx(0, 1)
        bell_op = Operator(bell)

        qc = QuantumCircuit(2)
        qc.unitary(bell_op, [0, 1])
        dag = circuit_to_dag(qc)

        out = UnitarySynthesis(basis_gates).run(dag)

        self.assertTrue(set(out.count_ops()).issubset(basis_gates))
Esempio n. 5
0
    def test_plugin_setup(self):
        """Tests the plugin via unitary synthesis pass"""
        transpiler_pass = UnitarySynthesis(
            basis_gates=["rx", "ry", "rz", "cx"],
            method="aqc",
            plugin_config=self._seed_config)

        dag = circuit_to_dag(self._qc)
        dag = transpiler_pass.run(dag)

        approx_circuit = dag_to_circuit(dag)
        approx_unitary = Operator(approx_circuit).data

        np.testing.assert_array_almost_equal(self._target_unitary,
                                             approx_unitary, 3)
Esempio n. 6
0
    def test_two_qubit_synthesis_to_directional_cx_from_coupling_map_natural_false(self):
        """Verify natural cx direction is used when specified in coupling map
        when natural_direction is None."""
        # TODO: should make check more explicit e.g. explicitly set gate
        # direction in test instead of using specific fake backend
        backend = FakeVigo()
        conf = backend.configuration()
        qr = QuantumRegister(2)
        coupling_map = CouplingMap([[0, 1], [1, 2], [1, 3], [3, 4]])
        triv_layout_pass = TrivialLayout(coupling_map)
        qc = QuantumCircuit(qr)
        qc.unitary(random_unitary(4, seed=12), [0, 1])
        unisynth_pass = UnitarySynthesis(
            basis_gates=conf.basis_gates,
            coupling_map=coupling_map,
            backend_props=backend.properties(),
            pulse_optimize=True,
            natural_direction=False,
        )
        pm = PassManager([triv_layout_pass, unisynth_pass])
        qc_out = pm.run(qc)

        unisynth_pass_nat = UnitarySynthesis(
            basis_gates=conf.basis_gates,
            coupling_map=coupling_map,
            backend_props=backend.properties(),
            pulse_optimize=True,
            natural_direction=False,
        )

        pm_nat = PassManager([triv_layout_pass, unisynth_pass_nat])
        qc_out_nat = pm_nat.run(qc)
        # the decomposer defaults to the [1, 0] direction but the coupling
        # map specifies a [0, 1] direction. Check that this is respected.
        self.assertTrue(
            all(
                # pylint: disable=no-member
                ([qr[1], qr[0]] == qlist for _, qlist, _ in qc_out.get_instructions("cx"))
            )
        )
        self.assertTrue(
            all(
                # pylint: disable=no-member
                ([qr[1], qr[0]] == qlist for _, qlist, _ in qc_out_nat.get_instructions("cx"))
            )
        )
        self.assertEqual(Operator(qc), Operator(qc_out))
        self.assertEqual(Operator(qc), Operator(qc_out_nat))
 def test_two_qubit_pulse_optimal_none_no_raise(self):
     """Verify pulse optimal decomposition when pulse_optimize==None doesn't
     raise when pulse optimal decomposition unknown."""
     # this assumes iswawp pulse optimal decomposition doesn't exist
     backend = FakeVigo()
     conf = backend.configuration()
     conf.basis_gates = [gate if gate != "cx" else "iswap" for gate in conf.basis_gates]
     qr = QuantumRegister(2)
     coupling_map = CouplingMap([[0, 1], [1, 2], [1, 3], [3, 4]])
     triv_layout_pass = TrivialLayout(coupling_map)
     qc = QuantumCircuit(qr)
     qc.unitary(random_unitary(4, seed=12), [0, 1])
     unisynth_pass = UnitarySynthesis(
         basis_gates=conf.basis_gates,
         coupling_map=coupling_map,
         backend_props=backend.properties(),
         pulse_optimize=None,
         natural_direction=True,
     )
     pm = PassManager([triv_layout_pass, unisynth_pass])
     try:
         qc_out = pm.run(qc)
     except QiskitError:
         self.fail("pulse_optimize=None raised exception unexpectedly")
     if isinstance(qc_out, QuantumCircuit):
         num_ops = qc_out.count_ops()
     else:
         num_ops = qc_out[0].count_ops()
     self.assertIn("sx", num_ops)
     self.assertLessEqual(num_ops["sx"], 14)
 def test_config_not_passed_to_default_on_fallback(self):
     """Test that all the keywords that the default synthesis plugin needs are passed to it,
     and if if config is specified it is not passed to the default."""
     # Set the mock plugin to reject all keyword arguments, but also be unable to handle
     # operators of any numbers of qubits.  This will cause fallback to the default handler,
     # which should receive a full set of keywords, still.
     self.MOCK_PLUGINS["_controllable"].min_qubits = np.inf
     self.MOCK_PLUGINS["_controllable"].max_qubits = 0
     self.MOCK_PLUGINS["_controllable"].support([])
     qc = QuantumCircuit(2)
     qc.unitary(np.eye(4, dtype=np.complex128), [0, 1])
     plugin_config = {"option_a": 3.14, "option_b": False}
     pm = PassManager([
         UnitarySynthesis(basis_gates=["u", "cx"],
                          method="_controllable",
                          plugin_config=plugin_config)
     ])
     with self.mock_default_run_method():
         pm.run(qc)
         self.DEFAULT_PLUGIN.run.assert_called()  # pylint: disable=no-member
         # This access should be `run.call_args.kwargs`, but the namedtuple access wasn't added
         # until Python 3.8.
         call_kwargs = self.DEFAULT_PLUGIN.run.call_args[1]  # pylint: disable=no-member
     expected_kwargs = [
         "basis_gates",
         "coupling_map",
         "gate_errors",
         "gate_lengths",
         "natural_direction",
         "pulse_optimize",
     ]
     for kwarg in expected_kwargs:
         self.assertIn(kwarg, call_kwargs)
     self.MOCK_PLUGINS["_controllable"].run.assert_not_called()
     self.assertNotIn("config", call_kwargs)
 def test_config_passed_to_non_default(self):
     """Test that a specified non-default plugin gets a config dict passed to it."""
     self.MOCK_PLUGINS["_controllable"].min_qubits = 0
     self.MOCK_PLUGINS["_controllable"].max_qubits = np.inf
     self.MOCK_PLUGINS["_controllable"].support([])
     qc = QuantumCircuit(2)
     qc.unitary(np.eye(4, dtype=np.complex128), [0, 1])
     return_dag = circuit_to_dag(qc)
     plugin_config = {"option_a": 3.14, "option_b": False}
     pm = PassManager([
         UnitarySynthesis(basis_gates=["u", "cx"],
                          method="_controllable",
                          plugin_config=plugin_config)
     ])
     with unittest.mock.patch.object(
             ControllableSynthesis, "run",
             return_value=return_dag) as plugin_mock:
         pm.run(qc)
         plugin_mock.assert_called()  # pylint: disable=no-member
         # This access should be `run.call_args.kwargs`, but the namedtuple access wasn't added
         # until Python 3.8.
         call_kwargs = plugin_mock.call_args[1]  # pylint: disable=no-member
     expected_kwargs = [
         "config",
     ]
     for kwarg in expected_kwargs:
         self.assertIn(kwarg, call_kwargs)
     self.assertEqual(call_kwargs["config"], plugin_config)
Esempio n. 10
0
 def test_two_qubit_pulse_optimal_none_optimal(self):
     """Verify pulse optimal decomposition when pulse_optimize==None."""
     # this assumes iswawp pulse optimal decomposition doesn't exist
     backend = FakeVigo()
     conf = backend.configuration()
     qr = QuantumRegister(2)
     coupling_map = CouplingMap([[0, 1], [1, 2], [1, 3], [3, 4]])
     triv_layout_pass = TrivialLayout(coupling_map)
     qc = QuantumCircuit(qr)
     qc.unitary(random_unitary(4, seed=12), [0, 1])
     unisynth_pass = UnitarySynthesis(
         basis_gates=conf.basis_gates,
         coupling_map=coupling_map,
         backend_props=backend.properties(),
         pulse_optimize=None,
         natural_direction=True,
     )
     pm = PassManager([triv_layout_pass, unisynth_pass])
     qc_out = pm.run(qc)
     if isinstance(qc_out, QuantumCircuit):
         num_ops = qc_out.count_ops()  # pylint: disable=no-member
     else:
         num_ops = qc_out[0].count_ops()
     self.assertIn("sx", num_ops)
     self.assertLessEqual(num_ops["sx"], 12)
Esempio n. 11
0
 def test_two_qubit_natural_direction_true_duration_fallback(self):
     """Verify not attempting pulse optimal decomposition when pulse_optimize==False."""
     # this assumes iswawp pulse optimal decomposition doesn't exist
     backend = FakeVigo()
     conf = backend.configuration()
     # conf.basis_gates = [gate if gate != "cx" else "iswap" for gate in conf.basis_gates]
     qr = QuantumRegister(2)
     coupling_map = CouplingMap([[0, 1], [1, 0], [1, 2], [1, 3], [3, 4]])
     triv_layout_pass = TrivialLayout(coupling_map)
     qc = QuantumCircuit(qr)
     qc.unitary(random_unitary(4, seed=12), [0, 1])
     unisynth_pass = UnitarySynthesis(
         basis_gates=conf.basis_gates,
         coupling_map=coupling_map,
         backend_props=backend.properties(),
         pulse_optimize=True,
         natural_direction=True,
     )
     pm = PassManager([triv_layout_pass, unisynth_pass])
     qc_out = pm.run(qc)
     self.assertTrue(
         all(
             # pylint: disable=no-member
             ([qr[0], qr[1]] == qlist
              for _, qlist, _ in qc_out.get_instructions("cx"))))
 def test_call_registered_class(self):
     """Test that a non-default plugin was called."""
     qc = QuantumCircuit(2)
     qc.unitary(np.eye(4, dtype=np.complex128), [0, 1])
     pm = PassManager([
         UnitarySynthesis(basis_gates=["u", "cx"], method="_controllable")
     ])
     with self.mock_default_run_method():
         pm.run(qc)
         self.DEFAULT_PLUGIN.run.assert_not_called()  # pylint: disable=no-member
     self.MOCK_PLUGINS["_controllable"].run.assert_called()
Esempio n. 13
0
 def test_with_pass_manager(self):
     """Tests the plugin via pass manager"""
     qc = QuantumCircuit(3)
     qc.unitary(np.eye(8), [0, 1, 2])
     aqc = PassManager([
         UnitarySynthesis(basis_gates=["u", "cx"],
                          method="aqc",
                          plugin_config=self._seed_config)
     ]).run(qc)
     approx_unitary = Operator(aqc).data
     np.testing.assert_array_almost_equal(np.eye(8), approx_unitary, 3)
 def test_fractional_cx_with_backendv2(self):
     """Test fractional CX gets used if present in target."""
     qr = QuantumRegister(2)
     circ = QuantumCircuit(qr)
     circ.append(random_unitary(4, seed=1), [0, 1])
     backend = FakeMumbaiFractionalCX()
     synth_pass = UnitarySynthesis(target=backend.target)
     tqc = synth_pass(circ)
     tqc_index = {qubit: index for index, qubit in enumerate(tqc.qubits)}
     self.assertGreaterEqual(len(tqc.get_instructions("rzx")), 1)
     for instr in tqc.get_instructions("rzx"):
         self.assertEqual((0, 1), (tqc_index[instr.qubits[0]], tqc_index[instr.qubits[1]]))
Esempio n. 15
0
    def test_plugin_configuration(self):
        """Tests plugin with a custom configuration."""
        config = {
            "network_layout": "sequ",
            "connectivity_type": "full",
            "depth": 0,
            "seed": 12345,
            "optimizer": SLSQP(),
        }
        transpiler_pass = UnitarySynthesis(
            basis_gates=["rx", "ry", "rz", "cx"],
            method="aqc",
            plugin_config=config)

        dag = circuit_to_dag(self._qc)
        dag = transpiler_pass.run(dag)

        approx_circuit = dag_to_circuit(dag)
        approx_unitary = Operator(approx_circuit).data

        np.testing.assert_array_almost_equal(self._target_unitary,
                                             approx_unitary, 3)
 def test_min_qubits_are_respected(self):
     """Test that the default handler gets used if the chosen plugin can't cope with a given
     unitary."""
     self.MOCK_PLUGINS["_controllable"].min_qubits = 3
     self.MOCK_PLUGINS["_controllable"].max_qubits = None
     qc = QuantumCircuit(2)
     qc.unitary(np.eye(4, dtype=np.complex128), [0, 1])
     pm = PassManager([
         UnitarySynthesis(basis_gates=["u", "cx"], method="_controllable")
     ])
     with self.mock_default_run_method():
         pm.run(qc)
         self.DEFAULT_PLUGIN.run.assert_called()  # pylint: disable=no-member
     self.MOCK_PLUGINS["_controllable"].run.assert_not_called()
Esempio n. 17
0
        def construct_passmanager(basis_gates, coupling_map,
                                  synthesis_fidelity, pulse_optimize):
            def _repeat_condition(property_set):
                return not property_set["depth_fixed_point"]

            seed = 2
            _map = [SabreLayout(coupling_map, max_iterations=2, seed=seed)]
            _embed = [
                FullAncillaAllocation(coupling_map),
                EnlargeWithAncilla(),
                ApplyLayout()
            ]
            _unroll3q = Unroll3qOrMore()
            _swap_check = CheckMap(coupling_map)
            _swap = [
                BarrierBeforeFinalMeasurements(),
                SabreSwap(coupling_map, heuristic="lookahead", seed=seed),
            ]
            _check_depth = [Depth(), FixedPoint("depth")]
            _optimize = [
                Collect2qBlocks(),
                ConsolidateBlocks(basis_gates=basis_gates),
                UnitarySynthesis(
                    basis_gates,
                    synthesis_fidelity,
                    coupling_map,
                    pulse_optimize=pulse_optimize,
                    natural_direction=True,
                ),
                Optimize1qGates(basis_gates),
            ]

            pm = PassManager()
            pm.append(_map)  # map to hardware by inserting swaps
            pm.append(_embed)
            pm.append(_unroll3q)
            pm.append(_swap_check)
            pm.append(_swap)
            pm.append(_check_depth + _optimize, do_while=_repeat_condition
                      )  # translate to & optimize over hardware native gates
            return pm
 def test_two_qubit_pulse_optimal_true_raises(self):
     """Verify raises if pulse optimal==True but cx is not in the backend basis."""
     backend = FakeVigo()
     conf = backend.configuration()
     # this assumes iswawp pulse optimal decomposition doesn't exist
     conf.basis_gates = [gate if gate != "cx" else "iswap" for gate in conf.basis_gates]
     qr = QuantumRegister(2)
     coupling_map = CouplingMap([[0, 1], [1, 2], [1, 3], [3, 4]])
     triv_layout_pass = TrivialLayout(coupling_map)
     qc = QuantumCircuit(qr)
     qc.unitary(random_unitary(4, seed=12), [0, 1])
     unisynth_pass = UnitarySynthesis(
         basis_gates=conf.basis_gates,
         coupling_map=coupling_map,
         backend_props=backend.properties(),
         pulse_optimize=True,
         natural_direction=True,
     )
     pm = PassManager([triv_layout_pass, unisynth_pass])
     with self.assertRaises(QiskitError):
         pm.run(qc)
 def test_two_qubit_natural_direction_true_gate_length_raises(self):
     """Verify not attempting pulse optimal decomposition when pulse_optimize==False."""
     # this assumes iswawp pulse optimal decomposition doesn't exist
     backend = FakeVigo()
     conf = backend.configuration()
     for _, nduv in backend.properties()._gates["cx"].items():
         nduv["gate_length"] = (4e-7, nduv["gate_length"][1])
         nduv["gate_error"] = (7e-3, nduv["gate_error"][1])
     qr = QuantumRegister(2)
     coupling_map = CouplingMap([[0, 1], [1, 0], [1, 2], [1, 3], [3, 4]])
     triv_layout_pass = TrivialLayout(coupling_map)
     qc = QuantumCircuit(qr)
     qc.unitary(random_unitary(4, seed=12), [0, 1])
     unisynth_pass = UnitarySynthesis(
         basis_gates=conf.basis_gates,
         backend_props=backend.properties(),
         pulse_optimize=True,
         natural_direction=True,
     )
     pm = PassManager([triv_layout_pass, unisynth_pass])
     with self.assertRaises(TranspilerError):
         pm.run(qc)
Esempio n. 20
0
def generate_unroll_3q(
    target,
    basis_gates=None,
    approximation_degree=None,
    unitary_synthesis_method="default",
    unitary_synthesis_plugin_config=None,
):
    """Generate an unroll >3q :class:`~qiskit.transpiler.PassManager`

    Args:
        target (Target): the :class:`~.Target` object representing the backend
        basis_gates (list): A list of str gate names that represent the basis
            gates on the backend target
        approximation_degree (float): The heuristic approximation degree to
            use. Can be between 0 and 1.
        unitary_synthesis_method (str): The unitary synthesis method to use
        unitary_synthesis_plugin_config (dict): The optional dictionary plugin
            configuration, this is plugin specific refer to the specified plugin's
            documenation for how to use.

    Returns:
        PassManager: The unroll 3q or more pass manager
    """
    unroll_3q = PassManager()
    unroll_3q.append(
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            min_qubits=3,
            plugin_config=unitary_synthesis_plugin_config,
            target=target,
        ))
    unroll_3q.append(HighLevelSynthesis())
    unroll_3q.append(Unroll3qOrMore(target=target, basis_gates=basis_gates))
    return unroll_3q
Esempio n. 21
0
def level_3_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "sabre"
    routing_method = pass_manager_config.routing_method or "sabre"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    target = pass_manager_config.target

    # 1. Unroll to 1q or 2q gates
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
            min_qubits=3,
        ),
        Unroll3qOrMore(),
    ]

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    def _csp_not_found_match(property_set):
        # If a layout hasn't been set by the time we run csp we need to run layout
        if property_set["layout"] is None:
            return True
        # if CSP layout stopped for any reason other than solution found we need
        # to run layout since CSP didn't converge.
        if (
            property_set["CSPLayout_stop_reason"] is not None
            and property_set["CSPLayout_stop_reason"] != "solution found"
        ):
            return True
        return False

    # 2a. If layout method is not set, first try a trivial layout
    _choose_layout_0 = (
        []
        if pass_manager_config.layout_method
        else [
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
        ]
    )
    # 2b. If trivial layout wasn't perfect (ie no swaps are needed) then try
    # using CSP layout to find a perfect layout
    _choose_layout_1 = (
        []
        if pass_manager_config.layout_method
        else CSPLayout(coupling_map, call_limit=10000, time_limit=60, seed=seed_transpiler)
    )

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout  is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout property set is unconditionally
        # set by trivial layout so we clear that before running CSP
        if property_set["trivial_layout_score"] is not None:
            if property_set["trivial_layout_score"] != 0:
                return True
        return False

    # 2c. if CSP didn't converge on a solution use layout_method (dense).
    if layout_method == "trivial":
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=4, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == "sabre":
        _swap += [SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=(
                    "No routing method selected, but circuit is not routed to device. "
                    "CheckMap Error: {check_map_msg}"
                ),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
                method=unitary_synthesis_method,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
                min_qubits=3,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes contiguous blocks.
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            coupling_map=coupling_map,
            backend_props=backend_properties,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(),
    ]

    # 9. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # 10. Call measure alignment. Should come after scheduling.
    if (
        timing_constraints.granularity != 1
        or timing_constraints.min_length != 1
        or timing_constraints.acquire_alignment != 1
    ):
        _alignments = [
            ValidatePulseGates(
                granularity=timing_constraints.granularity, min_length=timing_constraints.min_length
            ),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    pm3.append(_reset + _meas)
    if coupling_map or initial_layout:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_0, condition=_choose_layout_condition)
        pm3.append(_choose_layout_1, condition=_trivial_not_perfect)
        pm3.append(_choose_layout_2, condition=_csp_not_found_match)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
        target is not None and target.get_non_global_operation_names(strict_direction=True)
    ):
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
        pm3.append(_reset)
        # For transpiling to a target we need to run GateDirection in the
        # optimization loop to correct for incorrect directions that might be
        # inserted by UnitarySynthesis which is direction aware but only via
        # the coupling map which with a target doesn't give a full picture
        if target is not None:
            pm3.append(_depth_check + _opt + _unroll + _direction, do_while=_opt_control)
        else:
            pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    else:
        pm3.append(_reset)
        pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm3.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm3.append(_scheduling)
    elif instruction_durations:
        pm3.append(_time_unit_setup)
        pm3.append(_time_unit_conversion, condition=_contains_delay)
    pm3.append(_alignments)

    return pm3
Esempio n. 22
0
def level_0_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 0 pass manager: no explicit optimization other than mapping to backend.

    This pass manager applies the user-given initial layout. If none is given, a trivial
    layout consisting of mapping the i-th virtual qubit to the i-th physical qubit is used.
    Any unused physical qubit is allocated as ancilla space.

    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 0 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'trivial'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Choose an initial layout if not set by user (default: trivial layout)
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    if layout_method == 'trivial':
        _choose_layout = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout = SabreLayout(coupling_map,
                                     max_iterations=1,
                                     seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 3. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=2, search_width=2)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='basic', seed=seed_transpiler)
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # Build pass manager
    pm0 = PassManager()
    if coupling_map:
        pm0.append(_given_layout)
        pm0.append(_choose_layout, condition=_choose_layout_condition)
        pm0.append(_embed)
        pm0.append(_unroll3q)
        pm0.append(_swap_check)
        pm0.append(_swap, condition=_swap_condition)
    pm0.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm0.append(_direction_check)
        pm0.append(_direction, condition=_direction_condition)
    if scheduling_method:
        pm0.append(_scheduling)
    return pm0
Esempio n. 23
0
def level_3_pass_manager(
        pass_manager_config: PassManagerConfig) -> StagedPassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "sabre"
    routing_method = pass_manager_config.routing_method or "sabre"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints(
    )
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    target = pass_manager_config.target

    # Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    def _vf2_match_not_found(property_set):
        # If a layout hasn't been set by the time we run vf2 layout we need to
        # run layout
        if property_set["layout"] is None:
            return True
        # if VF2 layout stopped for any reason other than solution found we need
        # to run layout since VF2 didn't converge.
        if (property_set["VF2Layout_stop_reason"] is not None
                and property_set["VF2Layout_stop_reason"]
                is not VF2LayoutStopReason.SOLUTION_FOUND):
            return True
        return False

    # 2a. If layout method is not set, first try VF2Layout
    _choose_layout_0 = ([] if pass_manager_config.layout_method else VF2Layout(
        coupling_map,
        seed=seed_transpiler,
        call_limit=int(3e7),  # Set call limit to ~60 sec with retworkx 0.10.2
        properties=backend_properties,
        target=target,
    ))
    # 2b. if VF2 didn't converge on a solution use layout_method (dense).
    if layout_method == "trivial":
        _choose_layout_1 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_1 = DenseLayout(coupling_map,
                                       backend_properties,
                                       target=target)
    elif layout_method == "noise_adaptive":
        _choose_layout_1 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_1 = SabreLayout(coupling_map,
                                       max_iterations=4,
                                       seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    toqm_pass = False
    if routing_method == "basic":
        routing_pass = BasicSwap(coupling_map)
    elif routing_method == "stochastic":
        routing_pass = StochasticSwap(coupling_map,
                                      trials=200,
                                      seed=seed_transpiler)
    elif routing_method == "lookahead":
        routing_pass = LookaheadSwap(coupling_map,
                                     search_depth=5,
                                     search_width=6)
    elif routing_method == "sabre":
        routing_pass = SabreSwap(coupling_map,
                                 heuristic="decay",
                                 seed=seed_transpiler)
    elif routing_method == "toqm":
        HAS_TOQM.require_now("TOQM-based routing")
        from qiskit_toqm import ToqmSwap, ToqmStrategyO3, latencies_from_target

        if initial_layout:
            raise TranspilerError(
                "Initial layouts are not supported with TOQM-based routing.")

        toqm_pass = True
        # Note: BarrierBeforeFinalMeasurements is skipped intentionally since ToqmSwap
        #       does not yet support barriers.
        routing_pass = ToqmSwap(
            coupling_map,
            strategy=ToqmStrategyO3(
                latencies_from_target(coupling_map, instruction_durations,
                                      basis_gates, backend_properties,
                                      target)),
        )
    elif routing_method == "none":
        routing_pass = Error(
            msg=
            "No routing method selected, but circuit is not routed to device. "
            "CheckMap Error: {check_map_msg}",
            action="raise",
        )
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes contiguous blocks.
    _depth_check = [Depth(), FixedPoint("depth")]
    _size_check = [Size(), FixedPoint("size")]

    def _opt_control(property_set):
        return (not property_set["depth_fixed_point"]) or (
            not property_set["size_fixed_point"])

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates, target=target),
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            coupling_map=coupling_map,
            backend_props=backend_properties,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
            target=target,
        ),
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(),
    ]

    # Build pass manager
    init = common.generate_unroll_3q(
        target,
        basis_gates,
        approximation_degree,
        unitary_synthesis_method,
        unitary_synthesis_plugin_config,
    )
    init.append(RemoveResetInZeroState())
    init.append(OptimizeSwapBeforeMeasure())
    init.append(RemoveDiagonalGatesBeforeMeasure())
    if coupling_map or initial_layout:
        layout = PassManager()
        layout.append(_given_layout)
        layout.append(_choose_layout_0, condition=_choose_layout_condition)
        layout.append(_choose_layout_1, condition=_vf2_match_not_found)
        layout += common.generate_embed_passmanager(coupling_map)
        vf2_call_limit = None
        if pass_manager_config.layout_method is None and pass_manager_config.initial_layout is None:
            vf2_call_limit = int(
                3e7)  # Set call limit to ~60 sec with retworkx 0.10.2
        routing = common.generate_routing_passmanager(
            routing_pass,
            target,
            coupling_map=coupling_map,
            vf2_call_limit=vf2_call_limit,
            backend_properties=backend_properties,
            seed_transpiler=seed_transpiler,
            use_barrier_before_measurement=not toqm_pass,
        )
    else:
        layout = None
        routing = None
    translation = common.generate_translation_passmanager(
        target,
        basis_gates,
        translation_method,
        approximation_degree,
        coupling_map,
        backend_properties,
        unitary_synthesis_method,
        unitary_synthesis_plugin_config,
    )
    pre_routing = None
    if toqm_pass:
        pre_routing = translation
    optimization = PassManager()
    unroll = [pass_ for x in translation.passes() for pass_ in x["passes"]]
    optimization.append(_depth_check + _size_check)
    if (coupling_map and not coupling_map.is_symmetric) or (
            target is not None
            and target.get_non_global_operation_names(strict_direction=True)):
        pre_optimization = common.generate_pre_op_passmanager(
            target, coupling_map, True)
        _direction = [
            pass_ for x in common.generate_pre_op_passmanager(
                target, coupling_map).passes() for pass_ in x["passes"]
        ]
        # For transpiling to a target we need to run GateDirection in the
        # optimization loop to correct for incorrect directions that might be
        # inserted by UnitarySynthesis which is direction aware but only via
        # the coupling map which with a target doesn't give a full picture
        if target is not None:
            optimization.append(_opt + unroll + _depth_check + _size_check +
                                _direction,
                                do_while=_opt_control)
        else:
            optimization.append(_opt + unroll + _depth_check + _size_check,
                                do_while=_opt_control)
    else:
        pre_optimization = common.generate_pre_op_passmanager(
            remove_reset_in_zero=True)
        optimization.append(_opt + unroll + _depth_check + _size_check,
                            do_while=_opt_control)
    opt_loop = _depth_check + _opt + unroll
    optimization.append(opt_loop, do_while=_opt_control)
    sched = common.generate_scheduling(instruction_durations,
                                       scheduling_method, timing_constraints,
                                       inst_map)
    return StagedPassManager(
        init=init,
        layout=layout,
        pre_routing=pre_routing,
        routing=routing,
        translation=translation,
        pre_optimization=pre_optimization,
        optimization=optimization,
        scheduling=sched,
    )
Esempio n. 24
0
def level_3_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = [] if pass_manager_config.layout_method \
        else CSPLayout(coupling_map, call_limit=10000, time_limit=60, seed=seed_transpiler)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map,
                                       max_iterations=4,
                                       seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)
        ]
    elif routing_method == 'none':
        _swap += [
            Error(
                msg=
                'No routing method selected, but circuit is not routed to device. '
                'CheckMap Error: {check_map_msg}',
                action='raise')
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes contiguous blocks.
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(basis_gates),
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(),
    ]

    # Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    pm3.append(_reset + _meas)
    if coupling_map or initial_layout:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_1, condition=_choose_layout_condition)
        pm3.append(_choose_layout_2, condition=_choose_layout_condition)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
    pm3.append(_reset)
    if scheduling_method:
        pm3.append(_scheduling)

    return pm3
Esempio n. 25
0
def level_2_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelitites.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=1000, time_limit=10)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=2, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 3. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=5)]
    elif routing_method == 'sabre':
        _swap += [SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [UnrollCustomDefinitions(sel, basis_gates),
                   BasisTranslator(sel, basis_gates)]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(basis_gates), CommutativeCancellation()]

    # 9. Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # Build pass manager
    pm2 = PassManager()
    if coupling_map:
        pm2.append(_given_layout)
        pm2.append(_choose_layout_1, condition=_choose_layout_condition)
        pm2.append(_choose_layout_2, condition=_choose_layout_condition)
        pm2.append(_embed)
        pm2.append(_unroll3q)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt, do_while=_opt_control)
    if scheduling_method:
        pm2.append(_scheduling)

    return pm2
Esempio n. 26
0
def noise_pass_manager(basis_gates=None,
                       initial_layout=None,
                       coupling_map=None,
                       layout_method=None,
                       translation_method=None,
                       seed_transpiler=None,
                       backend=None,
                       routing_method=None,
                       backend_properties=None,
                       transform=False,
                       readout=True,
                       alpha=0.5,
                       next_gates=5,
                       front=True) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        backend (BaseBackend)

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    if basis_gates is None:
        if getattr(backend, 'configuration', None):
            basis_gates = getattr(backend.configuration(), 'basis_gates', None)
        # basis_gates could be None, or a list of basis, e.g. ['u3', 'cx']
    if isinstance(basis_gates, list) and all(
            isinstance(i, str) for i in basis_gates):
        basis_gates = basis_gates
    if basis_gates is None:
        basis_gates = ['u3', 'cx', 'id']
    # basis_gates = ['u3', 'cx', 'id']
    backend = backend
    if backend is None or backend.configuration().simulator:
        if backend_properties is None or coupling_map is None:
            raise QiskitError(
                "Backend is simulator or not specified, provide backend properties and coupling map."
            )
        coupling_map = coupling_map
        backend_properties = backend_properties
    else:
        if backend_properties is not None or coupling_map is not None:
            warnings.warn(
                "A backend was provide, ignoring backend properties and coupling map",
                UserWarning)
        coupling_map = backend.configuration().coupling_map
        backend_properties = backend.properties()

    if isinstance(coupling_map, list):
        coupling_map = CouplingMap(couplinglist=coupling_map)

    initial_layout = initial_layout
    layout_method = layout_method or 'dense'
    routing_method = routing_method or 'stochastic'
    translation_method = translation_method or 'translator'
    seed_transpiler = seed_transpiler

    # 1. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=10000, time_limit=60)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map,
                                       max_iterations=4,
                                       seed=seed_transpiler)
    elif layout_method == 'chain':
        _choose_layout_2 = ChainLayout(coupling_map,
                                       backend_properties,
                                       readout=readout)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)
        ]
    elif routing_method == 'noise_adaptive':
        _swap += [
            NoiseAdaptiveSwap(coupling_map,
                              backend_properties,
                              invert_score=invert_score,
                              swap_score=swap_score,
                              readout=readout,
                              alpha=alpha,
                              next_gates=next_gates,
                              front=front)
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes continguous blocks.
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(basis_gates),
        Optimize1qGates(basis_gates),
        CommutativeCancellation(),
    ]

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    if transform:
        _transform = TransformCxCascade()
        pm3.append(_transform)
    pm3.append(_reset + _meas)
    if coupling_map:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_1, condition=_choose_layout_condition)
        pm3.append(_choose_layout_2, condition=_choose_layout_condition)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
    pm3.append(_reset)

    return pm3
Esempio n. 27
0
def level_1_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints(
    )
    target = pass_manager_config.target

    # 1. Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    _choose_layout_and_score = [
        TrivialLayout(coupling_map),
        Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
    ]

    def _choose_layout_condition(property_set):
        return not property_set["layout"]

    # 2. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            min_qubits=3,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Unroll3qOrMore(),
    ]

    # 3. Use a better layout on densely connected qubits, if circuit needs swaps
    if layout_method == "trivial":
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _improve_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _improve_layout = SabreLayout(coupling_map,
                                      max_iterations=2,
                                      seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    def _not_perfect_yet(property_set):
        return (property_set["trivial_layout_score"] is not None
                and property_set["trivial_layout_score"] != 0)

    # 4. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=4, search_width=4)]
    elif routing_method == "sabre":
        _swap += [
            SabreSwap(coupling_map,
                      heuristic="lookahead",
                      seed=seed_transpiler)
        ]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=
                ("No routing method selected, but circuit is not routed to device. "
                 "CheckMap Error: {check_map_msg}"),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 6. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # custom unrolling
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # collection
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                min_qubits=3,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 7. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 8. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 9. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _opt = [Optimize1qGatesDecomposition(basis_gates), CXCancellation()]

    # 10. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # 11. Call measure alignment. Should come after scheduling.
    if (timing_constraints.granularity != 1
            or timing_constraints.min_length != 1
            or timing_constraints.acquire_alignment != 1):
        _alignments = [
            ValidatePulseGates(granularity=timing_constraints.granularity,
                               min_length=timing_constraints.min_length),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm1 = PassManager()
    if coupling_map or initial_layout:
        pm1.append(_given_layout)
        pm1.append(_unroll3q)
        pm1.append(_choose_layout_and_score,
                   condition=_choose_layout_condition)
        pm1.append(_improve_layout, condition=_not_perfect_yet)
        pm1.append(_embed)
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
    pm1.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
            target is not None
            and target.get_non_global_operation_names(strict_direction=True)):
        pm1.append(_direction_check)
        pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm1.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm1.append(_scheduling)
    elif instruction_durations:
        pm1.append(_time_unit_setup)
        pm1.append(_time_unit_conversion, condition=_contains_delay)
    pm1.append(_alignments)

    return pm1
Esempio n. 28
0
def level_1_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    _choose_layout_and_score = [
        TrivialLayout(coupling_map),
        Layout2qDistance(coupling_map, property_name='trivial_layout_score')
    ]

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    # 2. Use a better layout on densely connected qubits, if circuit needs swaps
    if layout_method == 'trivial':
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _improve_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _improve_layout = SabreLayout(coupling_map,
                                      max_iterations=2,
                                      seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    def _not_perfect_yet(property_set):
        return property_set['trivial_layout_score'] is not None and \
               property_set['trivial_layout_score'] != 0

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = Unroll3qOrMore()

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=4, search_width=4)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map,
                      heuristic='lookahead',
                      seed=seed_transpiler)
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 6. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 7. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 9. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(basis_gates), CXCancellation()]

    # 10. Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # Build pass manager
    pm1 = PassManager()
    if coupling_map:
        pm1.append(_given_layout)
        pm1.append(_choose_layout_and_score,
                   condition=_choose_layout_condition)
        pm1.append(_improve_layout, condition=_not_perfect_yet)
        pm1.append(_embed)
        pm1.append(_unroll3q)
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
    pm1.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm1.append(_direction_check)
        pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt, do_while=_opt_control)
    if scheduling_method:
        pm1.append(_scheduling)

    return pm1
Esempio n. 29
0
def level_2_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelities.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()

    # 1. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    # 1a. If layout_method is not set, first try a trivial layout
    _choose_layout_0 = (
        []
        if pass_manager_config.layout_method
        else [
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
        ]
    )
    # 1b. If a trivial layout wasn't perfect (ie no swaps are needed) then try using
    # CSP layout to find a perfect layout
    _choose_layout_1 = (
        []
        if pass_manager_config.layout_method
        else CSPLayout(coupling_map, call_limit=1000, time_limit=10, seed=seed_transpiler)
    )

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout  is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout is unconditionally set by trivial
        # layout so we need to clear it before contuing.
        if property_set["trivial_layout_score"] is not None:
            if property_set["trivial_layout_score"] != 0:
                property_set["layout"]._wrapped = None
                return True
        return False

    def _csp_not_found_match(property_set):
        # If a layout hasn't been set by the time we run csp we need to run layout
        if property_set["layout"] is None:
            return True
        # if CSP layout stopped for any reason other than solution found we need
        # to run layout since CSP didn't converge.
        if (
            property_set["CSPLayout_stop_reason"] is not None
            and property_set["CSPLayout_stop_reason"] != "solution found"
        ):
            return True
        return False

    # 1c. if CSP layout doesn't converge on a solution use layout_method (dense) to get a layout
    if layout_method == "trivial":
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=2, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 3. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=5)]
    elif routing_method == "sabre":
        _swap += [SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)]
    elif routing_method == "none":
        _swap += [
            Error(
                msg="No routing method selected, but circuit is not routed to device. "
                "CheckMap Error: {check_map_msg}",
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [UnrollCustomDefinitions(sel, basis_gates), BasisTranslator(sel, basis_gates)]
    elif translation_method == "synthesis":
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates, approximation_degree=approximation_degree),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _opt = [
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(basis_gates=basis_gates),
    ]

    # 9. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _scheduling = [TimeUnitConversion(instruction_durations)]
    if scheduling_method:
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # 10. Call measure alignment. Should come after scheduling.
    _alignments = [
        ValidatePulseGates(
            granularity=timing_constraints.granularity, min_length=timing_constraints.min_length
        ),
        AlignMeasures(alignment=timing_constraints.acquire_alignment),
    ]

    # Build pass manager
    pm2 = PassManager()
    if coupling_map or initial_layout:
        pm2.append(_given_layout)
        pm2.append(_choose_layout_0, condition=_choose_layout_condition)
        pm2.append(_choose_layout_1, condition=_trivial_not_perfect)
        pm2.append(_choose_layout_2, condition=_csp_not_found_match)
        pm2.append(_embed)
        pm2.append(_unroll3q)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    pm2.append(_scheduling)
    pm2.append(_alignments)
    return pm2
Esempio n. 30
0
def level_0_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 0 pass manager: no explicit optimization other than mapping to backend.

    This pass manager applies the user-given initial layout. If none is given, a trivial
    layout consisting of mapping the i-th virtual qubit to the i-th physical qubit is used.
    Any unused physical qubit is allocated as ancilla space.

    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 0 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "trivial"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints(
    )
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    target = pass_manager_config.target

    # 1. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            min_qubits=3,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Unroll3qOrMore(),
    ]

    # 2. Choose an initial layout if not set by user (default: trivial layout)
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set["layout"]

    if layout_method == "trivial":
        _choose_layout = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout = SabreLayout(coupling_map,
                                     max_iterations=1,
                                     seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=2, search_width=2)]
    elif routing_method == "sabre":
        _swap += [
            SabreSwap(coupling_map, heuristic="basic", seed=seed_transpiler)
        ]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=
                ("No routing method selected, but circuit is not routed to device. "
                 "CheckMap Error: {check_map_msg}"),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                min_qubits=3,
                plugin_config=unitary_synthesis_plugin_config,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            Collect1qRuns(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 7. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # 8. Call measure alignment. Should come after scheduling.
    if (timing_constraints.granularity != 1
            or timing_constraints.min_length != 1
            or timing_constraints.acquire_alignment != 1):
        _alignments = [
            ValidatePulseGates(granularity=timing_constraints.granularity,
                               min_length=timing_constraints.min_length),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm0 = PassManager()
    if coupling_map or initial_layout:
        pm0.append(_given_layout)
        pm0.append(_unroll3q)
        pm0.append(_choose_layout, condition=_choose_layout_condition)
        pm0.append(_embed)
        pm0.append(_swap_check)
        pm0.append(_swap, condition=_swap_condition)
    pm0.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
            target is not None
            and target.get_non_global_operation_names(strict_direction=True)):
        pm0.append(_direction_check)
        pm0.append(_direction, condition=_direction_condition)
        pm0.append(_unroll)
    if inst_map and inst_map.has_custom_gate():
        pm0.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm0.append(_scheduling)
    elif instruction_durations:
        pm0.append(_time_unit_setup)
        pm0.append(_time_unit_conversion, condition=_contains_delay)
    pm0.append(_alignments)
    return pm0