Esempio n. 1
0
    def make(self):
        """Build the component."""
        face = draw.shapely.geometry.Point(0, 0).buffer(1)
        eye = draw.shapely.geometry.Point(0, 0).buffer(0.2)
        eye_l = draw.translate(eye, -0.4, 0.4)
        eye_r = draw.translate(eye, 0.4, 0.4)

        smile = draw.shapely.geometry.Point(0, 0).buffer(0.8)
        cut_sq = draw.shapely.geometry.box(-1, -0.3, 1, 1)
        smile = draw.subtract(smile, cut_sq)

        frown = draw.rotate(smile, 180)
        frown = draw.translate(frown, 0, 0.3)
        frown = draw.subtract(frown,
                              draw.shapely.geometry.Point(0, -0.8).buffer(0.7))

        face = draw.subtract(face, eye_l)

        if self.p.happy:
            face = draw.subtract(face, smile)
        else:
            face = draw.subtract(face, frown)

        if self.p.wink:
            face = draw.subtract(
                face,
                draw.shapely.geometry.LineString([(0.2, 0.4),
                                                  (0.6, 0.4)]).buffer(0.02))
        else:
            face = draw.subtract(face, eye_r)

        face = draw.rotate(face, self.p.orientation, origin=(0, 0))

        self.add_qgeometry('poly', {'Smiley': face})
Esempio n. 2
0
    def make_inner_star(self):
        """This function creates the coordinates for the pins
        """
        p = self.p
        # Extracting coordinated from the user input values
        coords = self.make_coordinates_trap()
        coords1 = self.make_resonator_coordinates()
        trap_0 = draw.Polygon(coords)
        traps = self.make_rotation(trap_0, 5)

        # Define the final structure based on use input
        if (p.number_of_connectors) == 0:
            traps = traps[2]
        elif (p.number_of_connectors) == 1:
            traps = draw.union(traps[0], traps[2])
        elif (p.number_of_connectors) == 2:
            traps = draw.union(traps[0], traps[1], traps[2])
        elif (p.number_of_connectors) == 3:
            traps = draw.union(traps[0], traps[1], traps[2], traps[3])
        elif (p.number_of_connectors) == 4:
            traps = draw.union(traps[0], traps[1], traps[2], traps[3], traps[4])

        # Subtract from circle
        circle = self.make_circle()
        total1 = draw.subtract(circle, traps)

        # create rectangular connectors to junction
        pockets = self.make_pockets()
        rect1 = draw.rectangle(pockets[2], pockets[3])
        rect1 = draw.translate(rect1, xoff=coords1[0][0] * 1.1, yoff=p.radius)
        rect1 = draw.rotate(rect1, p.rotation_cpl1, origin=(0, 0))
        rect2 = draw.rectangle(pockets[2], pockets[3])
        rect2 = draw.translate(rect2, xoff=coords1[1][0] * 1.1, yoff=p.radius)
        rect2 = draw.rotate(rect2, p.rotation_cpl1, origin=(0, 0))

        #junction
        jjunction = draw.LineString([[0, 0], [0, coords[1][0]]])
        jjunction = draw.translate(jjunction, yoff=(1.15 * (p.radius)))
        jjunction = draw.rotate(jjunction, p.rotation_cpl1, origin=(0, 0))

        # Add connection to the junction
        total = draw.union(total1, rect1, rect2)

        objects = [total, jjunction]
        objects = draw.rotate(objects, p.orientation, origin=(0, 0))
        objects = draw.translate(objects, p.pos_x, p.pos_y)
        [total, jjunction] = objects

        self.add_qgeometry('poly', {'circle_inner': total},
                           subtract=p.subtract,
                           helper=p.helper,
                           layer=p.layer,
                           chip=p.chip)

        self.add_qgeometry('junction', {'poly': jjunction},
                           subtract=p.subtract,
                           helper=p.helper,
                           layer=p.layer,
                           chip=p.chip,
                           width=p.junc_h)
Esempio n. 3
0
    def make(self):
        """The make function implements the logic that creates the geoemtry
        (poly, path, etc.) from the qcomponent.options dictionary of
        parameters, and the adds them to the design, using
        qcomponent.add_qgeometry(...), adding in extra needed information, such
        as layer, subtract, etc."""
        p = self.p  # p for parsed parameters. Access to the parsed options.
        n = int(p.n)
        # Create the geometry
        # Generates a list of points
        n_polygon = [(p.radius * np.cos(2 * np.pi * x / n),
                      p.radius * np.sin(2 * np.pi * x / n)) for x in range(n)]
        # Converts said list into a shapely polygon
        n_polygon = draw.Polygon(n_polygon)

        n_polygon = draw.rotate(n_polygon, p.rotation, origin=(0, 0))
        n_polygon = draw.translate(n_polygon, p.pos_x, p.pos_y)

        ##############################################
        # add qgeometry
        self.add_qgeometry('poly', {'n_polygon': n_polygon},
                           subtract=p.subtract,
                           helper=p.helper,
                           layer=p.layer,
                           chip=p.chip)
Esempio n. 4
0
    def make(self):
        """
        The make function implements the logic that creates the geoemtry
        (poly, path, etc.) from the qcomponent.options dictionary of parameters,
        and the adds them to the design, using qcomponent.add_qgeometry(...),
        adding in extra needed information, such as layer, subtract, etc.
        """
        p = self.p  # p for parsed parameters. Access to the parsed options.

        # create the geometry
        caterpillar = [
            draw.Point(p.pos_x - p.radius * i * p.distance, p.pos_y).buffer(
                p.radius,
                resolution=int(p.resolution),
                cap_style=getattr(CAP_STYLE, p.cap_style),
                #join_style = getattr(JOIN_STYLE, p.join_style)
            ) for i in range(int(p.segments))
        ]
        caterpillar = draw.union(caterpillar)

        poly = draw.Polygon([(0, 0), (0.5, 0), (0.25, 0.5)])
        poly = draw.translate(poly, p.pos_x, p.pos_y)
        poly = draw.rotate(poly, angle=65)
        caterpillar = draw.subtract(caterpillar, poly)

        # rect = draw.rectangle(p.radius*0.75, p.radius*0.23,
        #                      xoff=p.pos_x+p.radius*0.3,
        #                      yoff=p.pos_y+p.radius*0.4)
        #caterpillar = draw.subtract(caterpillar, rect)
        # print(caterpillar)

        # add qgeometry
        #self.add_qgeometry('poly', {'mount': rect})
        self.add_qgeometry('poly', {'caterpillar': caterpillar})
Esempio n. 5
0
    def make_rotation(self, obj, num):
        """This function rotates objects.
        """
        p = self.p
        if num == 1:
            rotation = [p.rotation_rdout]
            x = 1
        elif num == 2:
            rotation = [p.rotation_rdout + 180]
            x = 1
        elif num == 3:
            rotation = [
                p.rotation_cpl1 + 180, p.rotation_cpl2 + 180,
                p.rotation_cpl3 + 180, p.rotation_cpl4 + 180
            ]
            x = 4
        elif num == 4:
            rotation = [
                p.rotation_cpl1, p.rotation_cpl2, p.rotation_cpl3,
                p.rotation_cpl4
            ]
            x = 4
        elif num == 5:
            rotation = [
                p.rotation_cpl1, p.rotation_cpl2, p.rotation_rdout,
                p.rotation_cpl3, p.rotation_cpl4
            ]
            x = 5

        obj_array = [0] * x
        for i in range(x):
            obj_array[i] = draw.rotate(obj, rotation[i], origin=(0, 0))

        return obj_array
    def make(self):
        """The make function implements the logic that creates the geoemtry
        (poly, path, etc.) from the qcomponent.options dictionary of
        parameters, and the adds them to the design, using
        qcomponent.add_qgeometry(...), adding in extra needed information, such
        as layer, subtract, etc."""
        p = self.p  # p for parsed parameters. Access to the parsed options.
        n = int(p.n)
        # Create the geometry

        spiral_list = []

        #Formulat to determine the size of the spiral based on inputed length.
        x_n = (p.length / (2 * n)) - (p.height + 2 * (p.gap + p.line_width) *
                                      (2 * n - 1))

        if x_n <= p.gap + p.line_width:
            self._error_message = f'Inputted values results in the width of the spiral being too small.'
            self.logger.warning(self._error_message)
            return

        for step in range(n):
            x_point = x_n / 2 + step * (p.line_width + p.gap)
            y_point = p.height / 2 + step * (p.line_width + p.gap)

            spiral_list.append((-x_point, -y_point))
            spiral_list.append((x_point, -y_point))
            spiral_list.append((x_point, y_point))
            spiral_list.append((-x_point - (p.line_width + p.gap), y_point))

        x_point = (x_n / 2 + (step + 1) * (p.line_width + p.gap))
        y_point = (p.height / 2 + (step + 1) * (p.line_width + p.gap) -
                   p.line_width / 2)
        spiral_list.append((-x_point, -y_point))
        spiral_list = draw.LineString(spiral_list)

        spiral_etch = draw.shapely.geometry.box(
            -(x_point + p.line_width / 2 + p.gap), -y_point,
            x_point - p.line_width / 2, y_point)
        #Generates a linestring to track port location
        points = draw.LineString([
            (-x_point + p.line_width / 2, -y_point + p.coupler_distance),
            (-x_point - p.line_width / 2, -y_point + p.coupler_distance)
        ])

        c_items = [spiral_list, spiral_etch, points]
        c_items = draw.rotate(c_items, p.orientation, origin=(0, 0))
        c_items = draw.translate(c_items, p.pos_x, p.pos_y)
        [spiral_list, spiral_etch, points] = c_items
        ##############################################
        # add elements
        self.add_qgeometry('path', {'n_spiral': spiral_list},
                           width=p.line_width)
        self.add_qgeometry('poly', {'n_spira_etch': spiral_etch}, subtract=True)

        # NEW PIN SPOT
        self.add_pin('spiralPin',
                     points=np.array(points.coords),
                     width=p.line_width,
                     input_as_norm=True)
    def generate_spiral_list(x: int, y: int):
        """Helper function to generate a sprital list.

        Args:
            x (int): x-coordinate
            y (int): y-coordinate

        Returns:
            list: A list of points
        """
        spiral_list = []

        for step in range(3):
            point_value = 20 + step * 5
            spiral_list.append((-point_value, -point_value))
            spiral_list.append((point_value, -point_value))
            spiral_list.append((point_value, point_value))
            spiral_list.append((-point_value - (1 + 4), point_value))

        point_value = 20 + (step + 1) * 5
        spiral_list.append((-point_value, -point_value))
        spiral_list = draw.LineString(spiral_list)

        spiral_list = draw.rotate(spiral_list, 0, origin=(x, y))
        spiral_list = draw.translate(spiral_list, x, y)

        return spiral_list
Esempio n. 8
0
    def make(self):
        """Convert self.options into QGeometry."""

        p = self.parse_options()  # Parse the string options into numbers

        # draw the lower pad as a rectangle
        JJ_pad_lower = draw.rectangle(p.JJ_pad_lower_width,
                                      p.JJ_pad_lower_height,
                                      p.JJ_pad_lower_pos_x,
                                      p.JJ_pad_lower_pos_y)

        finger_lower = draw.rectangle(
            p.finger_lower_width, p.finger_lower_height, p.JJ_pad_lower_pos_x,
            0.5 * (p.JJ_pad_lower_height + p.finger_lower_height))

        # merge the lower pad and the finger into a single object
        design = draw.union(JJ_pad_lower, finger_lower)

        # copy the pad/finger and rotate it by 90 degrees
        design2 = draw.rotate(design, 90.0)

        # translate the second pad/finger to achieve the desired extension
        # for a Manhattan-like configuration
        design2 = draw.translate(
            design2, 0.5 * (p.JJ_pad_lower_height + p.finger_lower_height) -
            0.5 * p.finger_lower_width - p.extension,
            0.5 * (p.JJ_pad_lower_height + p.finger_lower_height) -
            0.5 * p.finger_lower_width - p.extension)

        # now translate the second pad/finger to achieve the desired offset
        # from the first pad/finger
        design2 = draw.translate(design2,
                                 p.extension + p.finger_lower_width + p.offset)

        final_design = draw.union(design, design2)

        second_metal = draw.rectangle(
            p.second_metal_width, p.second_metal_length,
            p.JJ_pad_lower_pos_x + p.offset + 0.5 * p.finger_lower_width,
            0.5 * p.JJ_pad_lower_height + p.finger_lower_height -
            0.5 * p.second_metal_length)

        # translate everything so that the bottom left corner of the lower
        # pad is at the origin
        final_design = draw.translate(final_design, 0.5 * p.JJ_pad_lower_width,
                                      0.5 * p.JJ_pad_lower_height)
        second_metal = draw.translate(second_metal, 0.5 * p.JJ_pad_lower_width,
                                      0.5 * p.JJ_pad_lower_height)

        # now translate so that the bottom left corner is at the
        # user-defined coordinates (pos_x, pos_y)
        final_design = draw.translate(final_design, p.pos_x, p.pos_y)
        second_metal = draw.translate(second_metal, p.pos_x, p.pos_y)

        geom1 = {'design': final_design}
        self.add_qgeometry('poly', geom1, layer=p.layer, subtract=False)

        geom2 = {'design': second_metal}
        self.add_qgeometry('poly', geom2, layer=2.0, subtract=False)
Esempio n. 9
0
    def make(self):
        """This is executed by the user to generate the qgeometry for the
        component."""

        p = self.p
        trace_width = p.trace_width
        trace_width_half = trace_width / 2
        lead_length = p.lead_length
        trace_gap = p.trace_gap
        #########################################################

        # Geometry of main launch structure
        launch_pad = draw.Polygon([(0, trace_width_half),
                                   (-.122, trace_width_half + .035),
                                   (-.202, trace_width_half + .035),
                                   (-.202, -trace_width_half - .035),
                                   (-.122, -trace_width_half - .035),
                                   (0, -trace_width_half),
                                   (lead_length, -trace_width_half),
                                   (lead_length, +trace_width_half),
                                   (0, trace_width_half)])

        # Geometry pocket (gap)
        pocket = draw.Polygon([(0, trace_width_half + trace_gap),
                               (-.122, trace_width_half + trace_gap + .087),
                               (-.25, trace_width_half + trace_gap + .087),
                               (-.25, -trace_width_half - trace_gap - .087),
                               (-.122, -trace_width_half - trace_gap - .087),
                               (0, -trace_width_half - trace_gap),
                               (lead_length, -trace_width_half - trace_gap),
                               (lead_length, +trace_width_half + trace_gap),
                               (0, trace_width_half + trace_gap)])

        # These variables are used to graphically locate the pin locations
        main_pin_line = draw.LineString([(lead_length, trace_width_half),
                                         (lead_length, -trace_width_half)])

        # Create polygon object list
        polys1 = [main_pin_line, launch_pad, pocket]

        # Rotates and translates all the objects as requested. Uses package functions in
        # 'draw_utility' for easy rotation/translation
        polys1 = draw.rotate(polys1, p.orientation, origin=(0, 0))
        polys1 = draw.translate(polys1, xoff=p.pos_x, yoff=p.pos_y)
        [main_pin_line, launch_pad, pocket] = polys1

        # Adds the object to the qgeometry table
        self.add_qgeometry('poly', dict(launch_pad=launch_pad), layer=p.layer)

        # Subtracts out ground plane on the layer its on
        self.add_qgeometry('poly',
                           dict(pocket=pocket),
                           subtract=True,
                           layer=p.layer)

        # Generates the pins
        self.add_pin('tie', main_pin_line.coords, trace_width)
Esempio n. 10
0
    def make(self):
        """Convert self.options into QGeometry."""

        p = self.parse_options()  # Parse the string options into numbers

        # EDIT HERE - Replace the following with your code
        # Create some raw geometry
        # Use autocompletion for the `draw.` module (use tab key)
        rect = draw.rectangle(p.width, p.height, p.pos_x, p.pos_y)
        rect = draw.rotate(rect, p.rotation)
        geom = {'my_polygon': rect}
        self.add_qgeometry('poly', geom, layer=p.layer, subtract=False)
Esempio n. 11
0
    def make(self):
        """Build the component."""
        p = self.p
        prime_cpw_length = p.t_length * 2

        #Primary CPW
        prime_cpw = draw.LineString([[-prime_cpw_length / 2, 0],
                                     [prime_cpw_length / 2, 0]])

        #Secondary CPW
        second_cpw = draw.LineString([[0, -p.prime_width / 2],
                                      [0, -p.t_length]])

        #Rotate and Translate
        c_items = [prime_cpw, second_cpw]
        c_items = draw.rotate(c_items, p.orientation, origin=(0, 0))
        c_items = draw.translate(c_items, p.pos_x, p.pos_y)
        [prime_cpw, second_cpw] = c_items

        #Add to qgeometry tables
        self.add_qgeometry('path', {'prime_cpw': prime_cpw},
                           width=p.prime_width,
                           layer=p.layer)
        self.add_qgeometry('path', {'prime_cpw_sub': prime_cpw},
                           width=p.prime_width + 2 * p.prime_gap,
                           subtract=True,
                           layer=p.layer)
        self.add_qgeometry('path', {'second_cpw': second_cpw},
                           width=p.second_width,
                           layer=p.layer)
        self.add_qgeometry('path', {'second_cpw_sub': second_cpw},
                           width=p.second_width + 2 * p.second_gap,
                           subtract=True,
                           layer=p.layer)

        #Add pins
        prime_pin_list = prime_cpw.coords
        second_pin_list = second_cpw.coords

        self.add_pin('prime_start',
                     points=np.array(prime_pin_list[::-1]),
                     width=p.prime_width,
                     input_as_norm=True)
        self.add_pin('prime_end',
                     points=np.array(prime_pin_list),
                     width=p.prime_width,
                     input_as_norm=True)
        self.add_pin('second_end',
                     points=np.array(second_pin_list),
                     width=p.second_width,
                     input_as_norm=True)
Esempio n. 12
0
    def make_charge_line(self):
        """Creates the charge line if the user has charge line option to TRUE.
        """

        # Grab option values
        name = 'Charge_Line'

        p = self.p

        cl_arm = draw.box(0, 0, -p.cl_width, p.cl_length)
        cl_cpw = draw.box(0, 0, -8 * p.cl_width, p.cl_width)
        cl_metal = draw.cascaded_union([cl_arm, cl_cpw])

        cl_etcher = draw.buffer(cl_metal, p.cl_gap)

        port_line = draw.LineString([(-8 * p.cl_width, 0),
                                     (-8 * p.cl_width, p.cl_width)])

        polys = [cl_metal, cl_etcher, port_line]

        # Move the charge line to the side user requested
        cl_rotate = 0
        if (abs(p.cl_pocket_edge) > 135) or (abs(p.cl_pocket_edge) < 45):
            polys = draw.translate(
                polys, -(p.pocket_width / 2 + p.cl_ground_gap + p.cl_gap),
                p.cl_off_center)
            if (abs(p.cl_pocket_edge) > 135):
                cl_rotate = 180
        else:
            polys = draw.translate(
                polys, -(p.pocket_height / 2 + p.cl_ground_gap + p.cl_gap),
                p.cl_off_center)
            cl_rotate = 90
            if (p.cl_pocket_edge < 0):
                cl_rotate = -90

        # Rotate it to the pockets orientation
        polys = draw.rotate(polys, p.orientation + cl_rotate, origin=(0, 0))

        # Move to the final position
        polys = draw.translate(polys, p.pos_x, p.pos_y)

        [cl_metal, cl_etcher, port_line] = polys

        # Generating pins
        points = list(draw.shapely.geometry.shape(port_line).coords)
        self.add_pin(name, points, p.cl_width)

        # Adding to qgeometry table
        self.add_qgeometry('poly', dict(cl_metal=cl_metal))
        self.add_qgeometry('poly', dict(cl_etcher=cl_etcher), subtract=True)
Esempio n. 13
0
    def arc(self, coord_init, coord_center, angle):
        '''
        Generate x,y coordinates (in terms of shapely.geometry.Point()) of an arc with:
        a specified initial point, rotation center, and
        rotation direction (specified by angle in radian (float or integer), positive is ccw).

        coord_init, and coord_center should be shapely.geometry.Point object
        '''
        # access to parse values from the user option
        p = self.p

        # local variable
        r = p.readout_cpw_turnradius
        step = p.arc_step

        # determine step number
        step_angle = step / r if angle >= 0 else -step / r
        step_N = abs(int(angle / step_angle))
        #laststep_flag = True if angle % step_angle != 0 else False
        laststep_flag = bool(angle % step_angle != 0)

        # generate coordinate
        coord = [coord_init]
        point = coord_init
        for i in range(step_N):
            point = draw.rotate(point,
                                step_angle,
                                origin=coord_center,
                                use_radians=True)
            coord.append(point)
        if laststep_flag:
            point = draw.rotate(coord_init,
                                angle,
                                origin=coord_center,
                                use_radians=True)
            coord.append(point)
        coord = draw.LineString(coord)
        return coord
    def make(self):
        """The make function implements the logic that creates the geoemtry
        (poly, path, etc.) from the qcomponent.options dictionary of
        parameters, and the adds them to the design, using
        qcomponent.add_qgeometry(...), adding in extra needed information, such
        as layer, subtract, etc."""
        p = self.p  # p for parsed parameters. Access to the parsed options.

        # create the geometry
        rect = draw.rectangle(p.width, p.height, p.pos_x, p.pos_y)
        rec1 = draw.rectangle(p.inner.width, p.inner.height,
                              p.pos_x + p.inner.offset_x,
                              p.pos_y + p.inner.offset_y)
        rec1 = draw.rotate(rec1, p.inner.orientation)
        rect = draw.subtract(rect, rec1)
        rect = draw.rotate(rect, p.orientation)

        # add qgeometry
        self.add_qgeometry('poly', {'rect': rect},
                           subtract=p.subtract,
                           helper=p.helper,
                           layer=p.layer,
                           chip=p.chip)
Esempio n. 15
0
    def make(self):
        """Build the component."""
        p = self.p  # p for parsed parameters. Access to the parsed options.

        port_line = draw.LineString([(0, -p.width / 2), (0, p.width / 2)])

        # Rotates and translates the connector polygons (and temporary port_line)
        port_line = draw.rotate(port_line, p.orientation, origin=(0, 0))
        port_line = draw.translate(port_line, p.pos_x, p.pos_y)

        port_points = list(draw.shapely.geometry.shape(port_line).coords)

        #Generates the pin
        self.add_pin('short', port_points, p.width)
Esempio n. 16
0
    def make(self):
        """Convert self.options into QGeometry."""

        p = self.parse_options()  # Parse the string options into numbers

        # draw the lower pad as a rectangle
        plate1 = draw.rectangle(p.plate1_width, p.plate1_height,
                                p.plate1_pos_x, p.plate1_pos_y)

        segment_a = draw.rectangle(p.segment_a_length, p.segment_a_width,
                                   0.5 * (p.plate1_width + p.segment_a_length),
                                   0.5 * (p.squid_gap + p.segment_a_width))

        segment_a_lower = draw.translate(
            segment_a, 0.0, -1.0 * (p.squid_gap + p.segment_a_width))

        segment_b = draw.rectangle(
            p.segment_b_length, p.segment_b_width,
            0.5 * (p.plate1_width + p.segment_b_length) + p.JJ_gap +
            p.segment_a_length, 0.5 * (p.squid_gap + p.segment_b_width))

        segment_b_lower = draw.translate(
            segment_b, 0.0, -1.0 * (p.squid_gap + p.segment_b_width))

        segment_c = draw.rectangle(
            p.segment_c_width,
            p.squid_gap + p.segment_a_width + p.segment_b_width,
            0.5 * (p.plate1_width + p.segment_c_width) + p.segment_a_length +
            p.segment_b_length + p.JJ_gap, p.plate1_pos_y)

        segment_d = draw.rectangle(
            p.segment_d_length, p.segment_d_width,
            0.5 * (p.plate1_width + p.segment_d_length) + p.segment_a_length +
            p.segment_b_length + p.JJ_gap + p.segment_c_width, p.plate1_pos_y)

        plate2 = draw.rectangle(
            p.plate2_width, p.plate2_height, 0.5 *
            (p.plate1_width + p.plate2_width) + p.segment_a_length + p.JJ_gap +
            p.segment_b_length + p.segment_c_width + p.segment_d_length,
            p.plate1_pos_y)

        design1 = draw.union(plate1, segment_a, segment_a_lower, segment_b,
                             segment_b_lower, segment_c, segment_d, plate2)

        # now translate and rotate the final structure
        design1 = draw.rotate(design1, p.orientation, origin=(0, 0))
        design1 = draw.translate(design1, p.pos_x, p.pos_y)

        geom = {'design': design1}
        self.add_qgeometry('poly', geom, layer=p.layer, subtract=False)
Esempio n. 17
0
    def make_flux_line(self):
        """Creates the charge line if the user has charge line option to TRUE
        """

        # Grab option values
        pf = self.p.fl_options
        p = self.p
        #Make the T flux line
        h_line = draw.LineString([(-pf.t_top / 2, 0), (pf.t_top / 2, 0)])
        v_line = draw.LineString([(pf.t_offset, 0), (pf.t_offset, -0.03)])

        parts = [h_line, v_line]

        # Move the flux line down to the SQUID
        parts = draw.translate(
            parts, 0, -(p.cross_length + p.cross_gap + pf.t_inductive_gap +
                        pf.t_width / 2 + pf.t_gap))

        # Rotate and translate based on crossmon location
        parts = draw.rotate(parts, p.orientation, origin=(0, 0))
        parts = draw.translate(parts, p.pos_x, p.pos_y)

        [h_line, v_line] = parts

        # Adding to qgeometry table
        self.add_qgeometry('path', {
            'h_line': h_line,
            'v_line': v_line
        },
                           width=pf.t_width,
                           layer=p.layer)

        self.add_qgeometry('path', {
            'h_line_sub': h_line,
            'v_line_sub': v_line
        },
                           width=pf.t_width + 2 * pf.t_gap,
                           subtract=True,
                           layer=p.layer)

        # Generating pin
        pin_line = v_line.coords
        self.add_pin("flux_line",
                     points=pin_line,
                     width=pf.t_width,
                     gap=pf.t_gap,
                     input_as_norm=True)
Esempio n. 18
0
    def make_outer_circle(self):
        """This function draws the outer circle.
        """

        p = self.p

        coords = self.make_coordinates_trap()

        circle_outer = draw.Point(0, 0).buffer(
            p.radius * (1 + (p.connector_length / p.radius)),
            resolution=int(p.resolution),
            cap_style=getattr(CAP_STYLE, p.cap_style))

        #Connectors for the ground plane
        pockets = self.make_pockets()
        pocket_z = draw.rectangle(pockets[0] * 1.4, pockets[1])
        pocket_z = draw.translate(pocket_z, xoff=0, yoff=(coords[2][1]))
        pockets_ground = self.make_rotation(pocket_z, 5)

        if (p.number_of_connectors) == 0:
            circle_outer = draw.union(circle_outer, pockets_ground[2])
        elif (p.number_of_connectors) == 1:
            circle_outer = draw.union(circle_outer, pockets_ground[0],
                                      pockets_ground[2])
        elif (p.number_of_connectors) == 2:
            circle_outer = draw.union(circle_outer, pockets_ground[0],
                                      pockets_ground[1], pockets_ground[2])
        elif (p.number_of_connectors) == 3:
            circle_outer = draw.union(circle_outer, pockets_ground[0],
                                      pockets_ground[1], pockets_ground[2],
                                      pockets_ground[3])
        elif (p.number_of_connectors) == 4:
            circle_outer = draw.union(circle_outer, pockets_ground[0],
                                      pockets_ground[1], pockets_ground[2],
                                      pockets_ground[3], pockets_ground[4])

        ##################################################################
        # Add geometry and Qpin connections
        objects = [circle_outer]
        objects = draw.rotate(objects, p.orientation, origin=(0, 0))
        objects = draw.translate(objects, p.pos_x, p.pos_y)
        [circle_outer] = objects
        self.add_qgeometry('poly', {'circle_outer': circle_outer},
                           subtract=True,
                           helper=p.helper,
                           layer=p.layer,
                           chip=p.chip)
    def make_pocket(self):
        """Makes a basic Crossmon, 4 arm cross."""

        # self.p allows us to directly access parsed values (string -> numbers) form the user option
        p = self.p

        cross_width = p.cross_width
        cross_length = p.cross_length
        cross_gap = p.cross_gap

        # access to chip name
        chip = p.chip

        # Creates the cross and the etch equivalent.
        cross_line = draw.shapely.ops.unary_union([
            draw.LineString([(0, cross_length), (0, -cross_length)]),
            draw.LineString([(cross_length, 0), (-cross_length, 0)])
        ])

        cross = cross_line.buffer(cross_width / 2, cap_style=2)
        cross_etch = cross.buffer(cross_gap, cap_style=3, join_style=2)

        # The junction/SQUID
        #rect_jj = draw.rectangle(cross_width, cross_gap)
        #rect_jj = draw.translate(rect_jj, 0, -cross_length-cross_gap/2)
        rect_jj = draw.LineString([(0, -cross_length),
                                   (0, -cross_length - cross_gap)])

        #rotate and translate
        polys = [cross, cross_etch, rect_jj]
        polys = draw.rotate(polys, p.orientation, origin=(0, 0))
        polys = draw.translate(polys, p.pos_x, p.pos_y)

        [cross, cross_etch, rect_jj] = polys

        # generate qgeometry
        self.add_qgeometry('poly', dict(cross=cross), chip=chip)
        self.add_qgeometry('poly',
                           dict(cross_etch=cross_etch),
                           subtract=True,
                           chip=chip)
        self.add_qgeometry('junction',
                           dict(rect_jj=rect_jj),
                           width=cross_width,
                           chip=chip)
Esempio n. 20
0
    def make(self):
        """Convert self.options into QGeometry."""

        p = self.parse_options()  # Parse the string options into numbers

        # draw the lower pad as a rectangle
        JJ_pad_lower = draw.rectangle(p.JJ_pad_lower_width,
                                      p.JJ_pad_lower_height,
                                      p.JJ_pad_lower_pos_x,
                                      p.JJ_pad_lower_pos_y)

        finger_lower = draw.rectangle(
            p.finger_lower_width, p.finger_lower_height, p.JJ_pad_lower_pos_x,
            0.5 * (p.JJ_pad_lower_height + p.finger_lower_height))

        # fudge factor to merge the two options
        finger_lower = draw.translate(finger_lower, 0.0, -0.0001)

        # merge the lower pad and the finger into a single object
        design = draw.union(JJ_pad_lower, finger_lower)

        # copy the pad/finger and rotate it by 90 degrees
        design2 = draw.rotate(design, 90.0)

        # translate the second pad/finger to achieve the desired extension
        design2 = draw.translate(
            design2, 0.5 * (p.JJ_pad_lower_height + p.finger_lower_height) -
            0.5 * p.finger_lower_width - p.extension,
            0.5 * (p.JJ_pad_lower_height + p.finger_lower_height) -
            0.5 * p.finger_lower_width - p.extension)

        final_design = draw.union(design, design2)

        # translate the final design so that the bottom left
        # corner of the lower pad is at the origin
        final_design = draw.translate(final_design, 0.5 * p.JJ_pad_lower_width,
                                      0.5 * p.JJ_pad_lower_height)

        # now translate so that the design is centered on the
        # user-defined coordinates (x_pos, y_pos)
        final_design = draw.translate(final_design, p.x_pos, p.y_pos)

        geom = {'design': final_design}
        self.add_qgeometry('poly', geom, layer=p.layer, subtract=False)
Esempio n. 21
0
    def make_readout_resonator(self):
        """This function draws the readout resonator.
           Adds pins. And adds the drawn geometry to qgeomtery table.
        """

        p = self.p
        coords_readout = self.make_readout_coordinates()
        circle = self.make_circle()
        pockets = self.make_pockets()
        coords = self.make_coordinates_trap()

        # Make the readout resonator with the pocket
        contact_rdout = draw.Polygon(coords_readout)
        contact_rdout = draw.subtract(circle, contact_rdout)
        contact_rdout = self.make_rotation(contact_rdout, 1)

        # Define contacts
        pocket0 = draw.rectangle(pockets[0], pockets[1])
        pocket0 = draw.translate(pocket0, xoff=0, yoff=(coords[3][1]))
        pocket0 = self.make_rotation(pocket0, 1)

        # Join the coupler and contact
        contact_rdout = draw.union(contact_rdout[0], pocket0[0])

        pins = self.make_pin_coordinates()
        pins_rdout = self.make_rotation(pins, 2)

        objects = [contact_rdout, pins_rdout]
        objects = draw.rotate(objects, p.orientation, origin=(0, 0))
        objects = draw.translate(objects, p.pos_x, p.pos_y)
        [contact_rdout, pins_rdout] = objects

        ##################################################################
        # Add geometry and Qpin connections

        self.add_qgeometry('poly', {'contact_rdout': contact_rdout},
                           subtract=p.subtract,
                           helper=p.helper,
                           layer=p.layer,
                           chip=p.chip)
        self.add_pin('pin_rdout',
                     pins_rdout[0].coords,
                     width=p.cpw_width,
                     input_as_norm=True)
Esempio n. 22
0
    def make(self):
        """
        The make function implements the logic that creates the geoemtry
        (poly, path, etc.) from the qcomponent.options dictionary of parameters,
        and the adds them to the design, using qcomponent.add_qgeometry(...),
        adding in extra needed information, such as layer, subtract, etc.
        """
        p = self.p  # p for parsed parameters. Access to the parsed options.
        n = int(p.n)
        # Create the geometry

        spiral_list = []

        for step in range(n):
            point_value = p.radius / 2 + step * (p.width + p.gap)
            spiral_list.append((-point_value, -point_value))
            spiral_list.append((point_value, -point_value))
            spiral_list.append((point_value, point_value))
            spiral_list.append((-point_value - (p.width + p.gap), point_value))

        point_value = p.radius / 2 + (step + 1) * (p.width + p.gap)
        spiral_list.append((-point_value, -point_value))
        spiral_list = draw.LineString(spiral_list)

        spiral_list = draw.rotate(spiral_list, p.rotation, origin=(0, 0))
        spiral_list = draw.translate(spiral_list, p.pos_x, p.pos_y)

        ##############################################
        # add qgeometry
        self.add_qgeometry('path', {'n_spiral': spiral_list},
                           width=p.width,
                           subtract=p.subtract,
                           helper=p.helper,
                           layer=p.layer,
                           chip=p.chip)

        points = np.array(spiral_list.coords)
        # FIX POINTS,
        self.add_pin('spiralPin',
                     points=points[-2:],
                     width=p.width,
                     input_as_norm=True)
Esempio n. 23
0
    def make(self):
        """Build the component."""
        p = self.p  # p for parsed parameters. Access to the parsed options.

        port_line = draw.LineString([(0, -p.width / 2), (0, p.width / 2)])
        open_termination = draw.box(0, -(p.width / 2 + p.gap),
                                    p.termination_gap, (p.width / 2 + p.gap))
        # Rotates and translates the connector polygons (and temporary port_line)
        polys = [open_termination, port_line]
        polys = draw.rotate(polys, p.orientation, origin=(0, 0))
        polys = draw.translate(polys, p.pos_x, p.pos_y)
        [open_termination, port_line] = polys

        # Subtracts out ground plane on the layer its on
        self.add_qgeometry('poly', {'open_to_ground': open_termination},
                           subtract=True,
                           layer=p.layer)

        # Generates the pins
        self.add_pin('open', port_line.coords, p.width)
Esempio n. 24
0
    def make_pocket(self):
        """Makes standard transmon in a pocket."""

        # self.p allows us to directly access parsed values (string -> numbers) form the user option
        p = self.p

        # since we will reuse these options, parse them once and define them as variables
        pad_width = p.pad_width
        pad_height = p.pad_height
        pad_gap = p.pad_gap

        # make the pads as rectangles (shapely polygons)
        pad = draw.rectangle(pad_width, pad_height)
        pad_top = draw.translate(pad, 0, +(pad_height + pad_gap) / 2.)
        pad_bot = draw.translate(pad, 0, -(pad_height + pad_gap) / 2.)

        rect_jj = draw.LineString([(0, -pad_gap / 2), (0, +pad_gap / 2)])
        # the draw.rectangle representing the josephson junction
        # rect_jj = draw.rectangle(p.inductor_width, pad_gap)

        rect_pk = draw.rectangle(p.pocket_width, p.pocket_height)

        # Rotate and translate all qgeometry as needed.
        # Done with utility functions in Metal 'draw_utility' for easy rotation/translation
        # NOTE: Should modify so rotate/translate accepts qgeometry, would allow for
        # smoother implementation.
        polys = [rect_jj, pad_top, pad_bot, rect_pk]
        polys = draw.rotate(polys, p.orientation, origin=(0, 0))
        polys = draw.translate(polys, p.pos_x, p.pos_y)
        [rect_jj, pad_top, pad_bot, rect_pk] = polys

        # Use the geometry to create Metal qgeometry
        self.add_qgeometry('poly', dict(pad_top=pad_top, pad_bot=pad_bot))
        self.add_qgeometry('poly', dict(rect_pk=rect_pk), subtract=True)
        # self.add_qgeometry('poly', dict(
        #     rect_jj=rect_jj), helper=True)
        self.add_qgeometry('junction',
                           dict(rect_jj=rect_jj),
                           width=p.inductor_width)
Esempio n. 25
0
    def make_ro(self):
        '''
        Create the head of the readout resonator.
        Contains: the circular patch for coupling,
            the 45 deg line,
            the 45 deg arc,
            a short straight segment (of length w) for smooth subtraction
        '''
        # access to parsed values from the user option
        p = self.p

        # access to chip name
        chip = p.chip

        # local variables
        r = p.readout_radius
        w = p.readout_cpw_width
        g = p.readout_cpw_gap
        turnradius = p.readout_cpw_turnradius
        l_1 = p.readout_l1
        l_2 = p.readout_l2
        l_3 = p.readout_l3
        l_4 = p.readout_l4
        l_5 = p.readout_l5

        # create the coupling patch in term of a circle
        cppatch = draw.Point(0, 0).buffer(r)

        # create the extended arm
        ## useful coordinates
        x_1, y_1 = l_1 * np.cos(np.pi / 4), -l_1 * np.sin(np.pi / 4)
        x_2, y_2 = x_1 + turnradius * (
            1 - np.cos(np.pi / 4)), y_1 - turnradius * np.sin(np.pi / 4)
        coord_init = draw.Point(x_1, y_1)
        coord_center = draw.Point(x_1 - turnradius * np.cos(np.pi / 4),
                                  y_1 - turnradius * np.sin(np.pi / 4))
        x_3, y_3 = x_2, y_2
        x_4, y_4 = x_3, y_3 - l_2
        x_5, y_5 = x_4 + turnradius, y_4
        coord_init1 = draw.Point(x_4, y_4)
        coord_center1 = draw.Point(x_5, y_5)
        x_6, y_6 = x_5, y_5 - turnradius
        x_7, y_7 = x_5 + l_3, y_6
        x_8, y_8 = x_7, y_7 + turnradius
        coord_init2 = draw.Point((x_7, y_7))
        coord_center2 = draw.Point((x_8, y_8))
        x_9, y_9 = x_8, y_8 + turnradius
        x_10, y_10 = x_8 - l_4, y_9
        x_11, y_11 = x_10, y_10 + turnradius
        coord_init3 = draw.Point((x_10, y_10))
        coord_center3 = draw.Point((x_11, y_11))
        arc3 = self.arc(coord_init3, coord_center3, -np.pi)
        x_12, y_12 = x_11, y_11 + turnradius
        x_13, y_13 = x_12 + l_5, y_12
        line12 = draw.LineString([(x_12, y_12), (x_13, y_13)])
        x_14, y_14 = x_13, y_13 + turnradius
        coord_init4 = draw.Point((x_13, y_13))
        coord_center4 = draw.Point((x_14, y_14))
        arc4 = self.arc(coord_init4, coord_center4, np.pi)
        ## line containing the 45deg line, 45 deg arc,
        ## and a short straight segment for smooth subtraction
        cparm_line = draw.shapely.ops.unary_union([
            draw.LineString([(0, 0), coord_init]),
            self.arc(coord_init, coord_center, -np.pi / 4),
            draw.LineString([(x_3, y_3), (x_4, y_4)]),
            self.arc(coord_init1, coord_center1, np.pi / 2),
            draw.LineString([(x_6, y_6), (x_7, y_7)]),
            self.arc(coord_init2, coord_center2, np.pi),
            draw.LineString([(x_9, y_9), (x_10, y_10)]), arc3, line12, arc4,
            draw.translate(line12, 0, 2 * turnradius),
            draw.translate(arc3, 0, 4 * turnradius),
            draw.translate(line12, 0, 4 * turnradius),
            draw.translate(arc4, 0, 4 * turnradius),
            draw.translate(line12, 0, 6 * turnradius),
            draw.translate(arc3, 0, 8 * turnradius),
            draw.translate(line12, 0, 8 * turnradius)
        ])
        cparm = cparm_line.buffer(w / 2, cap_style=2, join_style=1)
        ## fix the gap resulting from buffer
        eps = 1e-3
        cparm = draw.Polygon(cparm.exterior)
        cparm = cparm.buffer(eps, join_style=2).buffer(-eps, join_style=2)

        # create combined objects for the signal line and the etch
        ro = draw.shapely.ops.unary_union([cppatch, cparm])
        ro_etch = ro.buffer(g, cap_style=2, join_style=2)
        x_15, y_15 = x_14, y_14 + 7 * turnradius
        x_16, y_16 = x_15 + g / 2, y_15
        port_line = draw.LineString([(x_15, y_15 + w / 2),
                                     (x_15, y_15 - w / 2)])
        subtract_patch = draw.LineString([(x_16, y_16 - w / 2 - g - eps),
                                          (x_16, y_16 + w / 2 + g + eps)
                                          ]).buffer(g / 2, cap_style=2)
        ro_etch = ro_etch.difference(subtract_patch)

        # rotate and translate
        polys = [ro, ro_etch, port_line]
        polys = draw.rotate(polys, p.orientation, origin=(0, 0))
        polys = draw.translate(polys, p.pos_x, p.pos_y)

        # update each object
        [ro, ro_etch, port_line] = polys

        # generate QGeometry
        self.add_qgeometry('poly', dict(ro=ro), chip=chip, layer=p.layer)
        self.add_qgeometry('poly',
                           dict(ro_etch=ro_etch),
                           chip=chip,
                           layer=p.layer_subtract,
                           subtract=p.subtract)

        # generate pins
        self.add_pin('readout', port_line.coords, width=w, gap=g, chip=chip)
    def make(self):
        """Build the component."""
        p = self.p
        N = int(p.finger_count)
        prime_cpw_length = p.cap_width * 2 * N

        #Primary CPW
        prime_cpw = draw.LineString([[-prime_cpw_length / 2, 0],
                                     [prime_cpw_length / 2, 0]])

        #Finger Capacitor
        cap_box = draw.rectangle(N * p.cap_width + (N - 1) * p.cap_gap,
                                 p.cap_gap + 2 * p.cap_width + p.finger_length,
                                 0, 0)
        make_cut_list = []
        make_cut_list.append([0, (p.finger_length) / 2])
        make_cut_list.append([(p.cap_width) + (p.cap_gap / 2),
                              (p.finger_length) / 2])
        flip = -1

        for i in range(1, N):
            make_cut_list.append([
                i * (p.cap_width) + (2 * i - 1) * (p.cap_gap / 2),
                flip * (p.finger_length) / 2
            ])
            make_cut_list.append([
                (i + 1) * (p.cap_width) + (2 * i + 1) * (p.cap_gap / 2),
                flip * (p.finger_length) / 2
            ])
            flip = flip * -1

        cap_cut = draw.LineString(make_cut_list).buffer(p.cap_gap / 2,
                                                        cap_style=2,
                                                        join_style=2)
        cap_cut = draw.translate(cap_cut,
                                 -(N * p.cap_width + (N - 1) * p.cap_gap) / 2,
                                 0)

        cap_body = draw.subtract(cap_box, cap_cut)
        cap_body = draw.translate(
            cap_body, 0, -p.cap_distance -
            (p.cap_gap + 2 * p.cap_width + p.finger_length) / 2)

        cap_etch = draw.rectangle(
            N * p.cap_width + (N - 1) * p.cap_gap + 2 * p.second_gap,
            p.cap_gap + 2 * p.cap_width + p.finger_length + 2 * p.second_gap,
            0, -p.cap_distance -
            (p.cap_gap + 2 * p.cap_width + p.finger_length) / 2)

        #Secondary CPW
        second_cpw_top = draw.LineString([[0, -p.prime_width / 2],
                                          [0, -p.cap_distance]])

        second_cpw_bottom = draw.LineString(
            [[
                0, -p.cap_distance -
                (p.cap_gap + 2 * p.cap_width + p.finger_length)
            ],
             [
                 0, -2 * p.cap_distance -
                 (p.cap_gap + 2 * p.cap_width + p.finger_length)
             ]])

        #Rotate and Translate
        c_items = [
            prime_cpw, second_cpw_top, second_cpw_bottom, cap_body, cap_etch
        ]
        c_items = draw.rotate(c_items, p.orientation, origin=(0, 0))
        c_items = draw.translate(c_items, p.pos_x, p.pos_y)
        [prime_cpw, second_cpw_top, second_cpw_bottom, cap_body,
         cap_etch] = c_items

        #Add to qgeometry tables
        self.add_qgeometry('path', {'prime_cpw': prime_cpw},
                           width=p.prime_width,
                           layer=p.layer)
        self.add_qgeometry('path', {'prime_cpw_sub': prime_cpw},
                           width=p.prime_width + 2 * p.prime_gap,
                           subtract=True,
                           layer=p.layer)
        self.add_qgeometry('path', {
            'second_cpw_top': second_cpw_top,
            'second_cpw_bottom': second_cpw_bottom
        },
                           width=p.second_width,
                           layer=p.layer)
        self.add_qgeometry('path', {
            'second_cpw_top_sub': second_cpw_top,
            'second_cpw_bottom_sub': second_cpw_bottom
        },
                           width=p.second_width + 2 * p.second_gap,
                           subtract=True,
                           layer=p.layer)

        self.add_qgeometry('poly', {'cap_body': cap_body}, layer=p.layer)
        self.add_qgeometry('poly', {'cap_etch': cap_etch},
                           layer=p.layer,
                           subtract=True)

        #Add pins
        prime_pin_list = prime_cpw.coords
        second_pin_list = second_cpw_bottom.coords

        self.add_pin('prime_start',
                     points=np.array(prime_pin_list[::-1]),
                     width=p.prime_width,
                     input_as_norm=True)
        self.add_pin('prime_end',
                     points=np.array(prime_pin_list),
                     width=p.prime_width,
                     input_as_norm=True)
        self.add_pin('second_end',
                     points=np.array(second_pin_list),
                     width=p.second_width,
                     input_as_norm=True)
Esempio n. 27
0
    def make_pocket(self):
        """Makes standard transmon in a pocket."""

        # self.p allows us to directly access parsed values (string -> numbers) form the user option
        p = self.p
        #  pcop = self.p.coupled_pads[name]  # parser on connector options

        # since we will reuse these options, parse them once and define them as variables
        pad_width = p.pad_width
        pad_height = p.pad_height
        pad_gap = p.pad_gap
        coupled_pad_height = p.coupled_pad_height
        coupled_pad_width = p.coupled_pad_width
        coupled_pad_gap = p.coupled_pad_gap

        # make the pads as rectangles (shapely polygons)
        pad = draw.rectangle(pad_width, pad_height)

        pad_top = draw.translate(pad, 0, +(pad_height + pad_gap) / 2.)
        # Here, you make your pads round. Not sharp shape on the left and right sides and also this should be the same for the bottom pad as the top pad.
        circ_left_top = draw.Point(-pad_width / 2., +(pad_height + pad_gap) /
                                   2.).buffer(pad_height / 2,
                                              resolution=16,
                                              cap_style=CAP_STYLE.round)
        circ_right_top = draw.Point(pad_width / 2., +(pad_height + pad_gap) /
                                    2.).buffer(pad_height / 2,
                                               resolution=16,
                                               cap_style=CAP_STYLE.round)
        # In here you create the teeth part and then you union them as one with the pad. Teeth only belong to top pad.
        coupled_pad = draw.rectangle(coupled_pad_width,
                                     coupled_pad_height + pad_height)
        coupler_pad_round = draw.Point(0., (coupled_pad_height + pad_height) /
                                       2).buffer(coupled_pad_width / 2,
                                                 resolution=16,
                                                 cap_style=CAP_STYLE.round)
        coupled_pad = draw.union(coupled_pad, coupler_pad_round)
        coupled_pad_left = draw.translate(
            coupled_pad, -(coupled_pad_width / 2. + coupled_pad_gap / 2.),
            +coupled_pad_height / 2. + pad_height + pad_gap / 2. -
            pad_height / 2)
        coupled_pad_right = draw.translate(
            coupled_pad, (coupled_pad_width / 2. + coupled_pad_gap / 2.),
            +coupled_pad_height / 2. + pad_height + pad_gap / 2. -
            pad_height / 2)
        pad_top_tmp = draw.union([circ_left_top, pad_top, circ_right_top])
        # The coupler pads are only created if low_W=0 and low_H=+1
        for name in self.options.connection_pads:
            if self.options.connection_pads[name][
                    'loc_W'] == 0 and self.options.connection_pads[name][
                        'loc_H'] == +1:
                pad_top_tmp = draw.union([
                    circ_left_top, coupled_pad_left, pad_top, coupled_pad_right,
                    circ_right_top
                ])
        pad_top = pad_top_tmp
        # Round part for the bottom pad. And again you should unite all of them.
        pad_bot = draw.translate(pad, 0, -(pad_height + pad_gap) / 2.)
        circ_left_bot = draw.Point(-pad_width / 2, -(pad_height + pad_gap) /
                                   2.).buffer(pad_height / 2,
                                              resolution=16,
                                              cap_style=CAP_STYLE.round)
        circ_right_bot = draw.Point(pad_width / 2, -(pad_height + pad_gap) /
                                    2.).buffer(pad_height / 2,
                                               resolution=16,
                                               cap_style=CAP_STYLE.round)
        pad_bot = draw.union([pad_bot, circ_left_bot, circ_right_bot])

        rect_jj = draw.LineString([(0, -pad_gap / 2), (0, +pad_gap / 2)])
        # the draw.rectangle representing the josephson junction
        # rect_jj = draw.rectangle(p.inductor_width, pad_gap)

        rect_pk = draw.rectangle(p.pocket_width, p.pocket_height)

        # Rotate and translate all qgeometry as needed.
        # Done with utility functions in Metal 'draw_utility' for easy rotation/translation
        # NOTE: Should modify so rotate/translate accepts qgeometry, would allow for
        # smoother implementation.
        polys = [rect_jj, pad_top, pad_bot, rect_pk]
        polys = draw.rotate(polys, p.orientation, origin=(0, 0))
        polys = draw.translate(polys, p.pos_x, p.pos_y)
        [rect_jj, pad_top, pad_bot, rect_pk] = polys

        # Use the geometry to create Metal qgeometry
        self.add_qgeometry('poly', dict(pad_top=pad_top, pad_bot=pad_bot))
        self.add_qgeometry('poly', dict(rect_pk=rect_pk), subtract=True)
        # self.add_qgeometry('poly', dict(
        #     rect_jj=rect_jj), helper=True)
        self.add_qgeometry('junction',
                           dict(rect_jj=rect_jj),
                           width=p.inductor_width)
Esempio n. 28
0
    def make_coupling_resonators(self, num):
        """This function draws the coulping resonators.
           Adds pins. And adds the drawn geometry to qgeomtery table.
        """
        p = self.p
        # rotate these trapezoids to form the contacts

        coords = self.make_coordinates_trap()
        coords1 = self.make_resonator_coordinates()
        trap_z = draw.Polygon(coords1)
        traps_connection = self.make_rotation(trap_z, 4)

        # Define contacts
        pockets = self.make_pockets()
        pocket0 = draw.rectangle(pockets[0], pockets[1])
        pocket0 = draw.translate(pocket0, xoff=0, yoff=(coords[3][1]))
        pockets = self.make_rotation(pocket0, 4)

        # Define the connectors
        circle = self.make_circle()
        contacts = [0] * num
        for i in range(num):
            contacts[i] = draw.subtract(circle, traps_connection[i])
            contacts[i] = draw.union(contacts[i], pockets[i])

        pins = self.make_pin_coordinates()
        pins_cpl = self.make_rotation(pins, 3)

        objects = [contacts, pins_cpl]
        objects = draw.rotate(objects, p.orientation, origin=(0, 0))
        objects = draw.translate(objects, p.pos_x, p.pos_y)
        [contacts, pins_cpl] = objects

        ##################################################################
        # Add geometry and Qpin connections

        if (p.number_of_connectors) >= 1:
            self.add_qgeometry('poly', {'contact_cpl1': contacts[0]},
                               subtract=p.subtract,
                               helper=p.helper,
                               layer=p.layer,
                               chip=p.chip)
            # Add pin connections
            self.add_pin('pin_cpl1',
                         pins_cpl[0].coords,
                         width=p.cpw_width,
                         input_as_norm=True)
        if (p.number_of_connectors) >= 2:
            self.add_qgeometry('poly', {'contact_cpl2': contacts[1]},
                               subtract=p.subtract,
                               helper=p.helper,
                               layer=p.layer,
                               chip=p.chip)
            # Add pin connections
            self.add_pin('pin_cpl2',
                         pins_cpl[1].coords,
                         width=p.cpw_width,
                         input_as_norm=True)
        if (p.number_of_connectors) >= 3:
            self.add_qgeometry('poly', {'contact_cpl3': contacts[2]},
                               subtract=p.subtract,
                               helper=p.helper,
                               layer=p.layer,
                               chip=p.chip)
            # Add pin connections
            self.add_pin('pin_cpl3',
                         pins_cpl[2].coords,
                         width=p.cpw_width,
                         input_as_norm=True)
        if (p.number_of_connectors) >= 4:
            self.add_qgeometry('poly', {'contact_cpl4': contacts[3]},
                               subtract=p.subtract,
                               helper=p.helper,
                               layer=p.layer,
                               chip=p.chip)
            # Add pin connections
            self.add_pin('pin_cpl4',
                         pins_cpl[3].coords,
                         width=p.cpw_width,
                         input_as_norm=True)
Esempio n. 29
0
    def make(self):
        """Build the component."""
        p = self.p
        N = int(p.finger_count)

        #Finger Capacitor
        cap_box = draw.rectangle(N * p.cap_width + (N - 1) * p.cap_gap,
                                 p.cap_gap + 2 * p.cap_width + p.finger_length,
                                 0, 0)
        make_cut_list = []
        make_cut_list.append([0, (p.finger_length) / 2])
        make_cut_list.append([(p.cap_width) + (p.cap_gap / 2),
                              (p.finger_length) / 2])
        flip = -1

        for i in range(1, N):
            make_cut_list.append([
                i * (p.cap_width) + (2 * i - 1) * (p.cap_gap / 2),
                flip * (p.finger_length) / 2
            ])
            make_cut_list.append([
                (i + 1) * (p.cap_width) + (2 * i + 1) * (p.cap_gap / 2),
                flip * (p.finger_length) / 2
            ])
            flip = flip * -1

        cap_cut = draw.LineString(make_cut_list).buffer(p.cap_gap / 2,
                                                        cap_style=2,
                                                        join_style=2)
        cap_cut = draw.translate(cap_cut,
                                 -(N * p.cap_width + (N - 1) * p.cap_gap) / 2,
                                 0)

        cap_body = draw.subtract(cap_box, cap_cut)
        cap_body = draw.translate(
            cap_body, 0, -p.cap_distance -
            (p.cap_gap + 2 * p.cap_width + p.finger_length) / 2)

        cap_etch = draw.rectangle(
            N * p.cap_width + (N - 1) * p.cap_gap + 2 * p.cap_gap_ground,
            p.cap_gap + 2 * p.cap_width + p.finger_length +
            2 * p.cap_gap_ground, 0, -p.cap_distance -
            (p.cap_gap + 2 * p.cap_width + p.finger_length) / 2)

        #CPW
        north_cpw = draw.LineString([[0, 0], [0, -p.cap_distance]])

        south_cpw = draw.LineString(
            [[
                0, -p.cap_distance -
                (p.cap_gap + 2 * p.cap_width + p.finger_length)
            ],
             [
                 0, -2 * p.cap_distance -
                 (p.cap_gap + 2 * p.cap_width + p.finger_length)
             ]])

        #Rotate and Translate
        c_items = [north_cpw, south_cpw, cap_body, cap_etch]
        c_items = draw.rotate(c_items, p.orientation, origin=(0, 0))
        c_items = draw.translate(c_items, p.pos_x, p.pos_y)
        [north_cpw, south_cpw, cap_body, cap_etch] = c_items

        #Add to qgeometry tables
        self.add_qgeometry('path', {'north_cpw': north_cpw},
                           width=p.north_width,
                           layer=p.layer)
        self.add_qgeometry('path', {'north_cpw_sub': north_cpw},
                           width=p.north_width + 2 * p.north_gap,
                           layer=p.layer,
                           subtract=True)

        self.add_qgeometry('path', {'south_cpw': south_cpw},
                           width=p.south_width,
                           layer=p.layer)
        self.add_qgeometry('path', {'south_cpw_sub': south_cpw},
                           width=p.south_width + 2 * p.south_gap,
                           layer=p.layer,
                           subtract=True)

        self.add_qgeometry('poly', {'cap_body': cap_body}, layer=p.layer)
        self.add_qgeometry('poly', {'cap_etch': cap_etch},
                           layer=p.layer,
                           subtract=True)

        #Add pins
        north_pin_list = north_cpw.coords
        south_pin_list = south_cpw.coords

        self.add_pin('north_end',
                     points=np.array(north_pin_list[::-1]),
                     width=p.north_width,
                     input_as_norm=True)
        self.add_pin('south_end',
                     points=np.array(south_pin_list),
                     width=p.south_width,
                     input_as_norm=True)
    def make(self):
        """Convert self.options into QGeometry."""

        p = self.parse_options()  # Parse the string options into numbers

        # draw the concentric pad regions
        outer_pad = draw.Point(0, 0).buffer(p.rad_o)
        space = draw.Point(0, 0).buffer((p.gap + p.rad_i))
        outer_pad = draw.subtract(outer_pad, space)
        inner_pad = draw.Point(0, 0).buffer(p.rad_i)
        #gap = draw.subtract(space, inner_pad)
        #pads = draw.union(outer_pad, inner_pad)

        # draw the top Josephson Junction
        jj_t = draw.LineString([(0.0, p.rad_i), (0.0, p.rad_i + p.gap)])

        # draw the bottom Josephson Junction
        jj_b = draw.LineString([(0.0, -1.0 * p.rad_i),
                                (0.0, -1.0 * p.rad_i - 1.0 * p.gap)])

        # draw the readout resonator
        qp1a = (-0.5 * p.pocket_w, p.rad_o + p.res_s
                )  # the first (x,y) coordinate is qpin #1
        qp1b = (p.res_ext, p.rad_o + p.res_s
                )  # the second (x,y) coordinate is qpin #1
        rr = draw.LineString([qp1a, qp1b])

        # draw the flux bias line
        a = (0.5 * p.pocket_w, -0.5 * p.fbl_gap)
        b = (0.5 * p.pocket_w - p.fbl_ext, -0.5 * p.fbl_gap)
        c = (p.rad_o + p.fbl_sp + p.fbl_rad, -1.0 * p.fbl_rad)
        d = (p.rad_o + p.fbl_sp + 0.2929 * p.fbl_rad, 0.0 - 0.7071 * p.fbl_rad)
        e = (p.rad_o + p.fbl_sp, 0.0)
        f = (p.rad_o + p.fbl_sp + 0.2929 * p.fbl_rad, 0.0 + 0.7071 * p.fbl_rad)
        g = (p.rad_o + p.fbl_sp + p.fbl_rad, p.fbl_rad)
        h = (0.5 * p.pocket_w - p.fbl_ext, 0.5 * p.fbl_gap)
        i = (0.5 * p.pocket_w, 0.5 * p.fbl_gap)
        fbl = draw.LineString([a, b, c, d, e, f, g, h, i])

        # draw the transmon pocket bounding box
        pocket = draw.rectangle(p.pocket_w, p.pocket_h)

        # Translate and rotate all shapes
        objects = [outer_pad, inner_pad, jj_t, jj_b, pocket, rr, fbl]
        objects = draw.rotate(objects, p.orientation, origin=(0, 0))
        objects = draw.translate(objects, xoff=p.pos_x, yoff=p.pos_y)
        [outer_pad, inner_pad, jj_t, jj_b, pocket, rr, fbl] = objects

        # define a function that both rotates and translates the qpin coordinates
        def qpin_rotate_translate(x):
            y = list(x)
            z = [0.0, 0.0]
            z[0] = y[0] * cos(p.orientation * 3.14159 / 180) - y[1] * sin(
                p.orientation * 3.14159 / 180)
            z[1] = y[0] * sin(p.orientation * 3.14159 / 180) + y[1] * cos(
                p.orientation * 3.14159 / 180)
            z[0] = z[0] + p.pos_x
            z[1] = z[1] + p.pos_y
            x = (z[0], z[1])
            return x

        # rotate and translate the qpin coordinates
        qp1a = qpin_rotate_translate(qp1a)
        qp1b = qpin_rotate_translate(qp1b)
        a = qpin_rotate_translate(a)
        b = qpin_rotate_translate(b)
        h = qpin_rotate_translate(h)
        i = qpin_rotate_translate(i)

        ##############################################################

        # Use the geometry to create Metal QGeometry
        geom_rr = {'path1': rr}
        geom_fbl = {'path2': fbl}
        geom_outer = {'poly1': outer_pad}
        geom_inner = {'poly2': inner_pad}
        geom_jjt = {'poly4': jj_t}
        geom_jjb = {'poly5': jj_b}
        geom_pocket = {'poly6': pocket}

        self.add_qgeometry('path',
                           geom_rr,
                           layer=1,
                           subtract=False,
                           width=p.cpw_width)
        self.add_qgeometry('path',
                           geom_fbl,
                           layer=1,
                           subtract=False,
                           width=p.cpw_width)
        self.add_qgeometry('poly', geom_outer, layer=1, subtract=False)
        self.add_qgeometry('poly', geom_inner, layer=1, subtract=False)
        self.add_qgeometry('junction',
                           geom_jjt,
                           layer=1,
                           subtract=False,
                           width=p.inductor_width)
        self.add_qgeometry('junction',
                           geom_jjb,
                           layer=1,
                           subtract=False,
                           width=p.inductor_width)
        self.add_qgeometry('poly', geom_pocket, layer=1, subtract=True)

        ###########################################################################

        # Add Qpin connections
        self.add_pin('pin1',
                     points=np.array([qp1b, qp1a]),
                     width=0.01,
                     input_as_norm=True)
        self.add_pin('pin2',
                     points=np.array([b, a]),
                     width=0.01,
                     input_as_norm=True)
        self.add_pin('pin3',
                     points=np.array([h, i]),
                     width=0.01,
                     input_as_norm=True)