def test_z2_symmetry(self):
        """Test mapping to qubit operator with z2 symmetry tapering"""
        z2_sector = [-1, 1, -1]

        def finder(z2_symmetries: Z2Symmetries) -> Optional[List[int]]:
            return z2_sector if not z2_symmetries.is_empty() else None

        def find_none(_z2_symmetries: Z2Symmetries) -> Optional[List[int]]:
            return None

        mapper = JordanWignerMapper()
        qubit_conv = QubitConverter(mapper, z2symmetry_reduction="auto")

        with self.subTest(
                "Locator returns None, should be untapered operator"):
            qubit_op = qubit_conv.convert(self.h2_op, sector_locator=find_none)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_JW)

        qubit_op = qubit_conv.convert(self.h2_op, sector_locator=finder)
        self.assertEqual(qubit_op, TestQubitConverter.REF_H2_JW_TAPERED)

        with self.subTest("convert_match()"):
            qubit_op = qubit_conv.convert_match(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_JW_TAPERED)
            self.assertIsNone(qubit_conv.num_particles)
            self.assertListEqual(qubit_conv.z2symmetries.tapering_values,
                                 z2_sector)
def _build_single_hopping_operator(
    excitation: Tuple[Tuple[int, ...], Tuple[int, ...]],
    num_spin_orbitals: int,
    qubit_converter: QubitConverter,
) -> Tuple[PauliSumOp, List[bool]]:
    label = ["I"] * num_spin_orbitals
    for occ in excitation[0]:
        label[occ] = "+"
    for unocc in excitation[1]:
        label[unocc] = "-"
    fer_op = FermionicOp(("".join(label), 4.0**len(excitation[0])))

    qubit_op: PauliSumOp = qubit_converter.convert_match(fer_op)
    z2_symmetries = qubit_converter.z2symmetries

    commutativities = []
    if not z2_symmetries.is_empty():
        for symmetry in z2_symmetries.symmetries:
            symmetry_op = PauliSumOp.from_list([(symmetry.to_label(), 1.0)])
            commuting = qubit_op.primitive.table.commutes_with_all(
                symmetry_op.primitive.table)
            anticommuting = qubit_op.primitive.table.anticommutes_with_all(
                symmetry_op.primitive.table)

            if commuting != anticommuting:  # only one of them is True
                if commuting:
                    commutativities.append(True)
                elif anticommuting:
                    commutativities.append(False)
            else:
                raise QiskitNatureError(
                    "Symmetry {} is nor commute neither anti-commute "
                    "to exciting operator.".format(symmetry.to_label()))

    return qubit_op, commutativities
Esempio n. 3
0
    def __init__(self, num_spin_orbitals: int, num_particles: Tuple[int, int],
                 qubit_converter: QubitConverter) -> None:
        """
        Args:
            num_spin_orbitals: The number of spin orbitals, has a min. value of 1.
            num_particles: The number of particles as a tuple storing the number of alpha- and
                           beta-spin electrons in the first and second number, respectively.
            qubit_converter: a QubitConverter instance.
        """

        # get the bitstring encoding the Hartree Fock state
        bitstr = hartree_fock_bitstring(num_spin_orbitals, num_particles)

        # encode the bitstring as a `FermionicOp`
        label = ['+' if bit else 'I' for bit in bitstr]
        bitstr_op = FermionicOp(''.join(label))

        # map the `FermionicOp` to a qubit operator
        qubit_op: PauliSumOp = qubit_converter.convert_match(bitstr_op)

        # construct the circuit
        qr = QuantumRegister(qubit_op.num_qubits, 'q')
        super().__init__(qr, name='HF')

        # Add gates in the right positions: we are only interested in the `X` gates because we want
        # to create particles (0 -> 1) where the initial state introduced a creation (`+`) operator.
        for i, bit in enumerate(qubit_op.primitive.table.X[0]):
            if bit:
                self.x(i)
    def test_two_qubit_reduction_and_z2_symmetry(self):
        """Test mapping to qubit operator with z2 symmetry tapering and two qubit reduction"""
        z2_sector = [-1]

        def cb_finder(z2_symmetries: Z2Symmetries,
                      converter: QubitConverter) -> Optional[List[int]]:
            return z2_sector if not z2_symmetries.is_empty() else None

        mapper = ParityMapper()
        qubit_conv = QubitConverter(mapper,
                                    two_qubit_reduction=True,
                                    z2symmetry_reduction="auto")
        qubit_op = qubit_conv.convert(self.h2_op,
                                      self.num_particles,
                                      sector_locator=cb_finder)
        self.assertEqual(qubit_op,
                         TestQubitConverter.REF_H2_PARITY_2Q_REDUCED_TAPER)
        self.assertEqual(qubit_conv.num_particles, self.num_particles)
        self.assertListEqual(qubit_conv.z2symmetries.tapering_values,
                             z2_sector)

        with self.subTest("convert_match()"):
            qubit_op = qubit_conv.convert_match(self.h2_op)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED_TAPER)
            self.assertEqual(qubit_conv.num_particles, self.num_particles)
            self.assertListEqual(qubit_conv.z2symmetries.tapering_values,
                                 z2_sector)

        with self.subTest("Change setting"):
            qubit_conv.z2symmetry_reduction = [1]
            qubit_op = qubit_conv.convert(self.h2_op, self.num_particles)
            self.assertNotEqual(
                qubit_op, TestQubitConverter.REF_H2_PARITY_2Q_REDUCED_TAPER)
            qubit_conv.z2symmetry_reduction = [-1]
            qubit_op = qubit_conv.convert(self.h2_op, self.num_particles)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED_TAPER)

        with self.subTest("Specify sector upfront"):
            qubit_conv = QubitConverter(mapper,
                                        two_qubit_reduction=True,
                                        z2symmetry_reduction=z2_sector)
            qubit_op = qubit_conv.convert(self.h2_op, self.num_particles)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED_TAPER)

        with self.subTest("Specify sector upfront, but invalid content"):
            with self.assertRaises(ValueError):
                _ = QubitConverter(mapper,
                                   two_qubit_reduction=True,
                                   z2symmetry_reduction=[5])

        with self.subTest("Specify sector upfront, but invalid length"):
            qubit_conv = QubitConverter(mapper,
                                        two_qubit_reduction=True,
                                        z2symmetry_reduction=[-1, 1])
            with self.assertRaises(QiskitNatureError):
                _ = qubit_conv.convert(self.h2_op, self.num_particles)
Esempio n. 5
0
    def test_chc_vscf(self):
        """ chc vscf test """

        co2_2modes_2modals_2body = [
            [[[[0, 0, 0]], 320.8467332810141], [[[0, 1, 1]],
                                                1760.878530705873],
             [[[1, 0, 0]], 342.8218290247543], [[[1, 1, 1]],
                                                1032.396323618631]],
            [[[[0, 0, 0], [1, 0, 0]], -57.34003649795117],
             [[[0, 0, 1], [1, 0, 0]], -56.33205925807966],
             [[[0, 1, 0], [1, 0, 0]], -56.33205925807966],
             [[[0, 1, 1], [1, 0, 0]], -60.13032761856809],
             [[[0, 0, 0], [1, 0, 1]], -65.09576309934431],
             [[[0, 0, 1], [1, 0, 1]], -62.2363839133389],
             [[[0, 1, 0], [1, 0, 1]], -62.2363839133389],
             [[[0, 1, 1], [1, 0, 1]], -121.5533969109279],
             [[[0, 0, 0], [1, 1, 0]], -65.09576309934431],
             [[[0, 0, 1], [1, 1, 0]], -62.2363839133389],
             [[[0, 1, 0], [1, 1, 0]], -62.2363839133389],
             [[[0, 1, 1], [1, 1, 0]], -121.5533969109279],
             [[[0, 0, 0], [1, 1, 1]], -170.744837386338],
             [[[0, 0, 1], [1, 1, 1]], -167.7433236025723],
             [[[0, 1, 0], [1, 1, 1]], -167.7433236025723],
             [[[0, 1, 1], [1, 1, 1]], -179.0536532281924]]
        ]
        num_modes = 2
        num_modals = [2, 2]

        vibrational_op_labels = _create_labels(co2_2modes_2modals_2body)
        vibr_op = VibrationalOp(vibrational_op_labels, num_modes, num_modals)

        converter = QubitConverter(DirectMapper())

        qubit_op = converter.convert_match(vibr_op)

        init_state = VSCF(num_modals)

        num_qubits = sum(num_modals)
        excitations = []
        excitations += generate_vibration_excitations(num_excitations=1,
                                                      num_modals=num_modals)
        excitations += generate_vibration_excitations(num_excitations=2,
                                                      num_modals=num_modals)
        chc_ansatz = CHC(num_qubits,
                         ladder=False,
                         excitations=excitations,
                         initial_state=init_state)

        backend = QuantumInstance(
            BasicAer.get_backend('statevector_simulator'),
            seed_transpiler=2,
            seed_simulator=2)
        optimizer = COBYLA(maxiter=1000)

        algo = VQE(chc_ansatz, optimizer=optimizer, quantum_instance=backend)
        vqe_result = algo.compute_minimum_eigenvalue(qubit_op)
        energy = vqe_result.optimal_value

        self.assertAlmostEqual(energy, self.reference_energy, places=4)
    def test_two_qubit_reduction(self):
        """Test mapping to qubit operator with two qubit reduction"""
        mapper = ParityMapper()
        qubit_conv = QubitConverter(mapper, two_qubit_reduction=True)

        with self.subTest(
                "Two qubit reduction ignored as no num particles given"):
            qubit_op = qubit_conv.convert(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_PARITY)
            self.assertIsNone(qubit_conv.num_particles)

        with self.subTest("Two qubit reduction, num particles given"):
            qubit_op = qubit_conv.convert(self.h2_op, self.num_particles)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED)
            self.assertEqual(qubit_conv.num_particles, self.num_particles)

        with self.subTest("convert_match()"):
            qubit_op = qubit_conv.convert_match(self.h2_op)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED)
            self.assertEqual(qubit_conv.num_particles, self.num_particles)

        with self.subTest("State is reset (Num particles lost)"):
            qubit_op = qubit_conv.convert(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_PARITY)
            self.assertIsNone(qubit_conv.num_particles)

        with self.subTest("Num particles given again"):
            qubit_op = qubit_conv.convert(self.h2_op, self.num_particles)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED)

        with self.subTest("Set for no two qubit reduction"):
            qubit_conv.two_qubit_reduction = False
            self.assertFalse(qubit_conv.two_qubit_reduction)
            qubit_op = qubit_conv.convert(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_PARITY)

        # Regression test against https://github.com/Qiskit/qiskit-nature/issues/271
        with self.subTest(
                "Two qubit reduction skipped when operator too small"):
            qubit_conv.two_qubit_reduction = True
            small_op = FermionicOp([("N_0", 1.0), ("E_1", 1.0)],
                                   register_length=2,
                                   display_format="sparse")
            expected_op = 1.0 * (I ^ I) - 0.5 * (I ^ Z) + 0.5 * (Z ^ Z)
            with contextlib.redirect_stderr(io.StringIO()) as out:
                qubit_op = qubit_conv.convert(small_op,
                                              num_particles=self.num_particles)
            self.assertEqual(qubit_op, expected_op)
            self.assertTrue(out.getvalue().strip().startswith(
                "The original qubit operator only contains 2 qubits! "
                "Skipping the requested two-qubit reduction!"))
    def test_mapping_basic(self):
        """Test mapping to qubit operator"""
        mapper = JordanWignerMapper()
        qubit_conv = QubitConverter(mapper)
        qubit_op = qubit_conv.convert(self.h2_op)

        self.assertIsInstance(qubit_op, PauliSumOp)

        # Note: The PauliSumOp equals, as used in the test below, use the equals of the
        #       SparsePauliOp which in turn uses np.allclose() to determine equality of
        #       coeffs. So the reference operator above will be matched on that basis so
        #       we don't need to worry about tiny precision changes for any reason.

        self.assertEqual(qubit_op, TestQubitConverter.REF_H2_JW)

        with self.subTest("Re-use test"):
            qubit_op = qubit_conv.convert(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_JW)

        with self.subTest("convert_match()"):
            qubit_op = qubit_conv.convert_match(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_JW)

        with self.subTest("Re-use with different mapper"):
            qubit_conv.mapper = ParityMapper()
            qubit_op = qubit_conv.convert(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_PARITY)

        with self.subTest(
                "Set two qubit reduction - no effect without num particles"):
            qubit_conv.two_qubit_reduction = True
            qubit_op = qubit_conv.convert_match(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_PARITY)

        with self.subTest("Force match set num particles"):
            qubit_conv.force_match(self.num_particles)
            qubit_op = qubit_conv.convert_match(self.h2_op)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED)
Esempio n. 8
0
def _build_single_hopping_operator(
        excitation: Tuple[Tuple[int, ...], Tuple[int, ...]],
        num_modals: List[int], qubit_converter: QubitConverter) -> PauliSumOp:
    sum_modes = sum(num_modals)

    label = ['I'] * sum_modes
    for occ in excitation[0]:
        label[occ] = '+'
    for unocc in excitation[1]:
        label[unocc] = '-'
    vibrational_op = VibrationalOp(''.join(label), len(num_modals), num_modals)
    qubit_op: PauliSumOp = qubit_converter.convert_match(vibrational_op)

    return qubit_op
Esempio n. 9
0
def hartree_fock_bitstring_mapped(
    num_spin_orbitals: int,
    num_particles: Tuple[int, int],
    qubit_converter: QubitConverter,
    match_convert: bool = True,
) -> List[bool]:
    """Compute the bitstring representing the mapped Hartree-Fock state for the specified system.

    Args:
        num_spin_orbitals: The number of spin orbitals, has a min. value of 1.
        num_particles: The number of particles as a tuple (alpha, beta) containing the number of
            alpha- and  beta-spin electrons, respectively.
        qubit_converter: A QubitConverter instance.
        match_convert: Whether to use `convert_match` method of the qubit converter (default),
            or just do mapping and possibly two qubit reduction but no tapering. The latter
            is an advanced usage - e.g. if we are trying to auto-select the tapering sector
            then we would not want any match conversion done on a converter that was set to taper.

    Returns:
        The bitstring representing the mapped state of the Hartree-Fock state as array of bools.
    """

    # get the bitstring encoding the Hartree Fock state
    bitstr = hartree_fock_bitstring(num_spin_orbitals, num_particles)

    # encode the bitstring as a `FermionicOp`
    label = ["+" if bit else "I" for bit in bitstr]
    bitstr_op = FermionicOp("".join(label), display_format="sparse")

    # map the `FermionicOp` to a qubit operator
    qubit_op: PauliSumOp = (
        qubit_converter.convert_match(bitstr_op, check_commutes=False)
        if match_convert
        else qubit_converter.convert_only(bitstr_op, num_particles)
    )

    # We check the mapped operator `x` part of the paulis because we want to have particles
    # i.e. True, where the initial state introduced a creation (`+`) operator.
    bits = []
    for bit in qubit_op.primitive.paulis.x[0]:
        bits.append(bit)

    return bits
    def test_two_qubit_reduction(self):
        """Test mapping to qubit operator with two qubit reduction"""
        mapper = ParityMapper()
        qubit_conv = QubitConverter(mapper, two_qubit_reduction=True)

        with self.subTest(
                "Two qubit reduction ignored as no num particles given"):
            qubit_op = qubit_conv.convert(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_PARITY)
            self.assertIsNone(qubit_conv.num_particles)

        with self.subTest("Two qubit reduction, num particles given"):
            qubit_op = qubit_conv.convert(self.h2_op, self.num_particles)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED)
            self.assertEqual(qubit_conv.num_particles, self.num_particles)

        with self.subTest("convert_match()"):
            qubit_op = qubit_conv.convert_match(self.h2_op)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED)
            self.assertEqual(qubit_conv.num_particles, self.num_particles)

        with self.subTest("State is reset (Num particles lost)"):
            qubit_op = qubit_conv.convert(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_PARITY)
            self.assertIsNone(qubit_conv.num_particles)

        with self.subTest("Num particles given again"):
            qubit_op = qubit_conv.convert(self.h2_op, self.num_particles)
            self.assertEqual(qubit_op,
                             TestQubitConverter.REF_H2_PARITY_2Q_REDUCED)

        with self.subTest("Set for no two qubit reduction"):
            qubit_conv.two_qubit_reduction = False
            self.assertFalse(qubit_conv.two_qubit_reduction)
            qubit_op = qubit_conv.convert(self.h2_op)
            self.assertEqual(qubit_op, TestQubitConverter.REF_H2_PARITY)
class TestGroundStateEigensolver(QiskitNatureTestCase):
    """Test GroundStateEigensolver"""
    def setUp(self):
        super().setUp()
        warnings.filterwarnings("ignore",
                                category=DeprecationWarning,
                                module=".*drivers.*")
        self.driver = HDF5Driver(
            self.get_resource_path("test_driver_hdf5.hdf5",
                                   "drivers/second_quantization/hdf5d"))
        self.seed = 56
        algorithm_globals.random_seed = self.seed

        self.reference_energy = -1.1373060356951838

        self.qubit_converter = QubitConverter(JordanWignerMapper())
        self.electronic_structure_problem = ElectronicStructureProblem(
            self.driver)

        self.num_spin_orbitals = 4
        self.num_particles = (1, 1)

    def test_npme(self):
        """Test NumPyMinimumEigensolver"""
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_npme_with_default_filter(self):
        """Test NumPyMinimumEigensolver with default filter"""
        solver = NumPyMinimumEigensolverFactory(
            use_default_filter_criterion=True)
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_vqe_uccsd(self):
        """Test VQE UCCSD case"""
        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
            ansatz=UCC(excitations="d"),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_vqe_uccsd_with_callback(self):
        """Test VQE UCCSD with callback."""
        def callback(nfev, parameters, energy, stddev):
            # pylint: disable=unused-argument
            print(f"iterations {nfev}: energy: {energy}")

        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
            callback=callback,
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        with contextlib.redirect_stdout(io.StringIO()) as out:
            res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)
        for idx, line in enumerate(out.getvalue().split("\n")):
            if line.strip():
                self.assertTrue(
                    line.startswith(f"iterations {idx+1}: energy: "))

    def test_vqe_ucc_custom(self):
        """Test custom ansatz in Factory use case"""
        solver = VQEUCCFactory(quantum_instance=QuantumInstance(
            BasicAer.get_backend("statevector_simulator")))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_aux_ops_reusability(self):
        """Test that the auxiliary operators can be reused"""
        # Regression test against #1475
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)

        modes = 4
        h_1 = np.eye(modes, dtype=complex)
        h_2 = np.zeros((modes, modes, modes, modes))
        aux_ops = list(
            ElectronicEnergy([
                OneBodyElectronicIntegrals(ElectronicBasis.MO, (h_1, None)),
                TwoBodyElectronicIntegrals(ElectronicBasis.MO,
                                           (h_2, None, None, None)),
            ], ).second_q_ops().values())
        aux_ops_copy = copy.deepcopy(aux_ops)

        _ = calc.solve(self.electronic_structure_problem)

        assert all(
            frozenset(a.to_list()) == frozenset(b.to_list())
            for a, b in zip(aux_ops, aux_ops_copy))

    def test_list_based_aux_ops(self):
        """Test the list based aux ops variant"""
        msg_ref = (
            "List-based `aux_operators` are deprecated as of version 0.3.0 and support "
            "for them will be removed no sooner than 3 months after the release. Instead, "
            "use dict-based `aux_operators`. You can switch to the dict-based interface "
            "immediately, by setting `qiskit_nature.settings.dict_aux_operators` to `True`."
        )
        with warnings.catch_warnings(record=True) as c_m:
            warnings.simplefilter("always")
            settings.dict_aux_operators = False
            try:
                solver = NumPyMinimumEigensolverFactory()
                calc = GroundStateEigensolver(self.qubit_converter, solver)
                res = calc.solve(self.electronic_structure_problem)
                self.assertAlmostEqual(res.total_energies[0],
                                       self.reference_energy,
                                       places=6)
                self.assertTrue(
                    np.all(
                        isinstance(aux_op, dict)
                        for aux_op in res.aux_operator_eigenvalues))
                aux_op_eigenvalue = res.aux_operator_eigenvalues[0]
                self.assertAlmostEqual(aux_op_eigenvalue[0][0], 2.0, places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[1][1], 0.0, places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[2][0], 0.0, places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[2][1], 0.0, places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[3][0], 0.0, places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[3][1], 0.0, places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[4][0], 0.0, places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[4][1], 0.0, places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[5][0],
                                       -1.3889487,
                                       places=6)
                self.assertAlmostEqual(aux_op_eigenvalue[5][1], 0.0, places=6)
            finally:
                settings.dict_aux_operators = True
            msg = str(c_m[0].message)
            self.assertEqual(msg, msg_ref)

    def _setup_evaluation_operators(self):
        # first we run a ground state calculation
        solver = VQEUCCFactory(quantum_instance=QuantumInstance(
            BasicAer.get_backend("statevector_simulator")))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)

        # now we decide that we want to evaluate another operator
        # for testing simplicity, we just use some pre-constructed auxiliary operators
        second_q_ops = self.electronic_structure_problem.second_q_ops()
        # Remove main op to leave just aux ops
        second_q_ops.pop(self.electronic_structure_problem.main_property_name)
        aux_ops_dict = self.qubit_converter.convert_match(second_q_ops)
        return calc, res, aux_ops_dict

    def test_eval_op_single(self):
        """Test evaluating a single additional operator"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because in this test we test a single operator evaluation
        add_aux_op = aux_ops["ParticleNumber"][0]

        # now we have the ground state calculation evaluate it
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res[0], complex)
        self.assertAlmostEqual(add_aux_op_res[0].real, 2, places=6)

    def test_eval_op_single_none(self):
        """Test evaluating a single `None` operator"""
        calc, res, _ = self._setup_evaluation_operators()
        # we filter the list because in this test we test a single operator evaluation
        add_aux_op = None

        # now we have the ground state calculation evaluate it
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsNone(add_aux_op_res)

    def test_eval_op_list(self):
        """Test evaluating a list of additional operators"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            "number of particles": 2,
            "s^2": 0,
            "magnetization": 0
        }
        add_aux_op = [
            aux_ops["ParticleNumber"],
            aux_ops["AngularMomentum"],
            aux_ops["Magnetization"],
        ]

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, list)
        # in this list we require that the order of the results remains unchanged
        for idx, expected in enumerate(expected_results.values()):
            self.assertAlmostEqual(add_aux_op_res[idx][0].real,
                                   expected,
                                   places=6)

    def test_eval_op_list_none(self):
        """Test evaluating a list of additional operators incl. `None`"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            "number of particles": 2,
            "s^2": 0,
            "magnetization": 0
        }
        add_aux_op = [
            aux_ops["ParticleNumber"],
            aux_ops["AngularMomentum"],
            aux_ops["Magnetization"],
        ] + [None]

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, list)
        # in this list we require that the order of the results remains unchanged
        for idx, expected in enumerate(expected_results.values()):
            self.assertAlmostEqual(add_aux_op_res[idx][0].real,
                                   expected,
                                   places=6)
        self.assertIsNone(add_aux_op_res[-1])

    def test_eval_op_dict(self):
        """Test evaluating a dict of additional operators"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            "number of particles": 2,
            "s^2": 0,
            "magnetization": 0
        }
        add_aux_op = [
            aux_ops["ParticleNumber"],
            aux_ops["AngularMomentum"],
            aux_ops["Magnetization"],
        ]
        # now we convert it into a dictionary
        add_aux_op = dict(zip(expected_results.keys(), add_aux_op))

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, dict)
        for name, expected in expected_results.items():
            self.assertAlmostEqual(add_aux_op_res[name][0].real,
                                   expected,
                                   places=6)

    def test_eval_op_dict_none(self):
        """Test evaluating a dict of additional operators incl. `None`"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            "number of particles": 2,
            "s^2": 0,
            "magnetization": 0
        }
        add_aux_op = [
            aux_ops["ParticleNumber"],
            aux_ops["AngularMomentum"],
            aux_ops["Magnetization"],
        ]
        # now we convert it into a dictionary
        add_aux_op = dict(zip(expected_results.keys(), add_aux_op))
        add_aux_op["None"] = None

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, dict)
        for name, expected in expected_results.items():
            self.assertAlmostEqual(add_aux_op_res[name][0].real,
                                   expected,
                                   places=6)
        self.assertIsNone(add_aux_op_res["None"])

    @slow_test
    def test_eval_op_qasm(self):
        """Regression tests against https://github.com/Qiskit/qiskit-nature/issues/53."""
        solver = VQEUCCFactory(
            optimizer=SLSQP(maxiter=100),
            expectation=PauliExpectation(),
            quantum_instance=QuantumInstance(
                backend=BasicAer.get_backend("qasm_simulator"),
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res_qasm = calc.solve(self.electronic_structure_problem)

        hamiltonian = self.electronic_structure_problem.second_q_ops()[
            self.electronic_structure_problem.main_property_name]
        qubit_op = self.qubit_converter.map(hamiltonian)

        ansatz = solver.get_solver(self.electronic_structure_problem,
                                   self.qubit_converter).ansatz
        circuit = ansatz.assign_parameters(res_qasm.raw_result.optimal_point)
        mean = calc.evaluate_operators(circuit, qubit_op)

        self.assertAlmostEqual(res_qasm.eigenenergies[0], mean[0].real)

    @unittest.skipUnless(optionals.HAS_AER,
                         "qiskit-aer is required to run this test")
    def test_eval_op_qasm_aer(self):
        """Regression tests against https://github.com/Qiskit/qiskit-nature/issues/53."""

        backend = qiskit.providers.aer.Aer.get_backend("aer_simulator")

        solver = VQEUCCFactory(
            optimizer=SLSQP(maxiter=100),
            expectation=AerPauliExpectation(),
            include_custom=True,
            quantum_instance=QuantumInstance(
                backend=backend,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res_qasm = calc.solve(self.electronic_structure_problem)

        hamiltonian = self.electronic_structure_problem.second_q_ops()[
            self.electronic_structure_problem.main_property_name]
        qubit_op = self.qubit_converter.map(hamiltonian)

        ansatz = solver.get_solver(self.electronic_structure_problem,
                                   self.qubit_converter).ansatz
        circuit = ansatz.assign_parameters(res_qasm.raw_result.optimal_point)
        mean = calc.evaluate_operators(circuit, qubit_op)

        self.assertAlmostEqual(res_qasm.eigenenergies[0], mean[0].real)

    def _prepare_uccsd_hf(self, qubit_converter):
        initial_state = HartreeFock(self.num_spin_orbitals, self.num_particles,
                                    qubit_converter)
        ansatz = UCCSD(
            qubit_converter,
            self.num_particles,
            self.num_spin_orbitals,
            initial_state=initial_state,
        )

        return ansatz

    def test_uccsd_hf(self):
        """uccsd hf test"""
        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SLSQP(maxiter=100)
        backend = BasicAer.get_backend("statevector_simulator")
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=QuantumInstance(backend=backend),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)

        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=6)

    @slow_test
    def test_uccsd_hf_qasm(self):
        """uccsd hf test with qasm simulator."""
        qubit_converter = QubitConverter(ParityMapper())
        ansatz = self._prepare_uccsd_hf(qubit_converter)

        backend = BasicAer.get_backend("qasm_simulator")

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            expectation=PauliExpectation(),
            quantum_instance=QuantumInstance(
                backend=backend,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        gsc = GroundStateEigensolver(qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0], -1.138, places=2)

    @slow_test
    @unittest.skipUnless(optionals.HAS_AER,
                         "qiskit-aer is required to run this test")
    def test_uccsd_hf_aer_statevector(self):
        """uccsd hf test with Aer statevector"""

        backend = qiskit.providers.aer.Aer.get_backend(
            "aer_simulator_statevector")

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SLSQP(maxiter=100)
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=QuantumInstance(backend=backend),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=6)

    @slow_test
    @unittest.skipUnless(optionals.HAS_AER,
                         "qiskit-aer is required to run this test")
    def test_uccsd_hf_aer_qasm(self):
        """uccsd hf test with Aer qasm simulator."""

        backend = qiskit.providers.aer.Aer.get_backend("aer_simulator")

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            expectation=PauliExpectation(group_paulis=False),
            quantum_instance=QuantumInstance(
                backend=backend,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0], -1.131, places=2)

    @slow_test
    @unittest.skipUnless(optionals.HAS_AER,
                         "qiskit-aer is required to run this test")
    def test_uccsd_hf_aer_qasm_snapshot(self):
        """uccsd hf test with Aer qasm simulator snapshot."""

        backend = qiskit.providers.aer.Aer.get_backend("aer_simulator")

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            expectation=AerPauliExpectation(),
            quantum_instance=QuantumInstance(backend=backend),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=3)

    def test_freeze_core_z2_symmetry_compatibility(self):
        """Regression test against #192.

        An issue arose when the FreezeCoreTransformer was combined with the automatic Z2Symmetry
        reduction. This regression test ensures that this behavior remains fixed.
        """
        driver = HDF5Driver(hdf5_input=self.get_resource_path(
            "LiH_sto3g.hdf5", "transformers/second_quantization/electronic"))
        problem = ElectronicStructureProblem(driver, [FreezeCoreTransformer()])
        qubit_converter = QubitConverter(
            ParityMapper(),
            two_qubit_reduction=True,
            z2symmetry_reduction="auto",
        )

        solver = NumPyMinimumEigensolverFactory()
        gsc = GroundStateEigensolver(qubit_converter, solver)

        result = gsc.solve(problem)
        self.assertAlmostEqual(result.total_energies[0], -7.882, places=2)

    def test_total_dipole(self):
        """Regression test against #198.

        An issue with calculating the dipole moment that had division None/float.
        """
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_dipole_moment_in_debye[0],
                               0.0,
                               places=1)

    def test_print_result(self):
        """Regression test against #198 and general issues with printing results."""
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        with contextlib.redirect_stdout(io.StringIO()) as out:
            print(res)
        # do NOT change the below! Lines have been truncated as to not force exact numerical matches
        expected = """\
            === GROUND STATE ENERGY ===

            * Electronic ground state energy (Hartree): -1.857
              - computed part:      -1.857
            ~ Nuclear repulsion energy (Hartree): 0.719
            > Total ground state energy (Hartree): -1.137

            === MEASURED OBSERVABLES ===

              0:  # Particles: 2.000 S: 0.000 S^2: 0.000 M: 0.000

            === DIPOLE MOMENTS ===

            ~ Nuclear dipole moment (a.u.): [0.0  0.0  1.38

              0:
              * Electronic dipole moment (a.u.): [0.0  0.0  -1.38
                - computed part:      [0.0  0.0  -1.38
              > Dipole moment (a.u.): [0.0  0.0  0.0]  Total: 0.
                             (debye): [0.0  0.0  0.0]  Total: 0.
        """
        for truth, expected in zip(out.getvalue().split("\n"),
                                   expected.split("\n")):
            assert truth.strip().startswith(expected.strip())

    def test_default_initial_point(self):
        """Test when using the default initial point."""

        solver = VQEUCCFactory(quantum_instance=QuantumInstance(
            BasicAer.get_backend("statevector_simulator")))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)

        np.testing.assert_array_equal(solver.initial_point.to_numpy_array(),
                                      [0.0, 0.0, 0.0])
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_vqe_ucc_factory_with_user_initial_point(self):
        """Test VQEUCCFactory when using it with a user defined initial point."""

        initial_point = np.asarray(
            [1.28074029e-19, 5.92226076e-08, 1.11762559e-01])
        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
            initial_point=initial_point,
            optimizer=SLSQP(maxiter=1),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        np.testing.assert_array_almost_equal(res.raw_result.optimal_point,
                                             initial_point)

    def test_vqe_ucc_factory_with_mp2(self):
        """Test when using MP2InitialPoint to generate the initial point."""

        informed_start = MP2InitialPoint()

        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
            initial_point=informed_start,
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)

        np.testing.assert_array_almost_equal(
            solver.initial_point.to_numpy_array(), [0.0, 0.0, -0.07197145])
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)
Esempio n. 12
0
class TestGroundStateEigensolver(QiskitNatureTestCase):
    """ Test GroundStateEigensolver """
    def setUp(self):
        super().setUp()
        self.driver = HDF5Driver(
            self.get_resource_path('test_driver_hdf5.hdf5', 'drivers/hdf5d'))
        self.seed = 700
        algorithm_globals.random_seed = self.seed

        self.reference_energy = -1.1373060356951838

        self.qubit_converter = QubitConverter(JordanWignerMapper())
        self.electronic_structure_problem = ElectronicStructureProblem(
            self.driver)

        self.num_spin_orbitals = 4
        self.num_particles = (1, 1)

    def test_npme(self):
        """ Test NumPyMinimumEigensolver """
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_npme_with_default_filter(self):
        """ Test NumPyMinimumEigensolver with default filter """
        solver = NumPyMinimumEigensolverFactory(
            use_default_filter_criterion=True)
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_vqe_uccsd(self):
        """ Test VQE UCCSD case """
        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend('statevector_simulator')),
            ansatz=UCC(excitations='d'),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_vqe_ucc_custom(self):
        """ Test custom ansatz in Factory use case """
        solver = VQEUCCFactory(
            QuantumInstance(BasicAer.get_backend('statevector_simulator')))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_aux_ops_reusability(self):
        """ Test that the auxiliary operators can be reused """
        # Regression test against #1475
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)

        modes = 4
        h_1 = np.eye(modes, dtype=complex)
        h_2 = np.zeros((modes, modes, modes, modes))
        aux_ops = [build_ferm_op_from_ints(h_1, h_2)]
        aux_ops_copy = copy.deepcopy(aux_ops)

        _ = calc.solve(self.electronic_structure_problem)
        assert all(
            frozenset(a.to_list()) == frozenset(b.to_list())
            for a, b in zip(aux_ops, aux_ops_copy))

    def _setup_evaluation_operators(self):
        # first we run a ground state calculation
        solver = VQEUCCFactory(
            QuantumInstance(BasicAer.get_backend('statevector_simulator')))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)

        # now we decide that we want to evaluate another operator
        # for testing simplicity, we just use some pre-constructed auxiliary operators
        _, *aux_ops = self.qubit_converter.convert_match(
            self.electronic_structure_problem.second_q_ops())
        return calc, res, aux_ops

    def test_eval_op_single(self):
        """ Test evaluating a single additional operator """
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because in this test we test a single operator evaluation
        add_aux_op = aux_ops[0][0]

        # now we have the ground state calculation evaluate it
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res[0], complex)
        self.assertAlmostEqual(add_aux_op_res[0].real, 2, places=6)

    def test_eval_op_single_none(self):
        """ Test evaluating a single `None` operator """
        calc, res, _ = self._setup_evaluation_operators()
        # we filter the list because in this test we test a single operator evaluation
        add_aux_op = None

        # now we have the ground state calculation evaluate it
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsNone(add_aux_op_res)

    def test_eval_op_list(self):
        """ Test evaluating a list of additional operators """
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            'number of particles': 2,
            's^2': 0,
            'magnetization': 0
        }
        add_aux_op = aux_ops[0:3]

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, list)
        # in this list we require that the order of the results remains unchanged
        for idx, expected in enumerate(expected_results.values()):
            self.assertAlmostEqual(add_aux_op_res[idx][0].real,
                                   expected,
                                   places=6)

    def test_eval_op_list_none(self):
        """ Test evaluating a list of additional operators incl. `None` """
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            'number of particles': 2,
            's^2': 0,
            'magnetization': 0
        }
        add_aux_op = aux_ops[0:3] + [None]

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, list)
        # in this list we require that the order of the results remains unchanged
        for idx, expected in enumerate(expected_results.values()):
            self.assertAlmostEqual(add_aux_op_res[idx][0].real,
                                   expected,
                                   places=6)
        self.assertIsNone(add_aux_op_res[-1])

    def test_eval_op_dict(self):
        """ Test evaluating a dict of additional operators """
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            'number of particles': 2,
            's^2': 0,
            'magnetization': 0
        }
        add_aux_op = aux_ops[0:3]
        # now we convert it into a dictionary
        add_aux_op = dict(zip(expected_results.keys(), add_aux_op))

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, dict)
        for name, expected in expected_results.items():
            self.assertAlmostEqual(add_aux_op_res[name][0].real,
                                   expected,
                                   places=6)

    def test_eval_op_dict_none(self):
        """ Test evaluating a dict of additional operators incl. `None` """
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            'number of particles': 2,
            's^2': 0,
            'magnetization': 0
        }
        add_aux_op = aux_ops[0:3]
        # now we convert it into a dictionary
        add_aux_op = dict(zip(expected_results.keys(), add_aux_op))
        add_aux_op['None'] = None

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, dict)
        for name, expected in expected_results.items():
            self.assertAlmostEqual(add_aux_op_res[name][0].real,
                                   expected,
                                   places=6)
        self.assertIsNone(add_aux_op_res['None'])

    @slow_test
    def test_eval_op_qasm(self):
        """Regression tests against https://github.com/Qiskit/qiskit-nature/issues/53."""
        solver = VQEUCCFactory(
            optimizer=SLSQP(maxiter=100),
            expectation=PauliExpectation(),
            quantum_instance=QuantumInstance(
                backend=BasicAer.get_backend('qasm_simulator'),
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res_qasm = calc.solve(self.electronic_structure_problem)

        hamiltonian = self.electronic_structure_problem.second_q_ops()[0]
        qubit_op = self.qubit_converter.map(hamiltonian)

        ansatz = solver.get_solver(self.electronic_structure_problem,
                                   self.qubit_converter).ansatz
        circuit = ansatz.assign_parameters(res_qasm.raw_result.optimal_point)
        mean = calc.evaluate_operators(circuit, qubit_op)

        self.assertAlmostEqual(res_qasm.eigenenergies[0], mean[0].real)

    def test_eval_op_qasm_aer(self):
        """Regression tests against https://github.com/Qiskit/qiskit-nature/issues/53."""
        try:
            # pylint: disable=import-outside-toplevel
            # pylint: disable=unused-import
            from qiskit import Aer
            backend = Aer.get_backend('qasm_simulator')
        except ImportError as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return

        solver = VQEUCCFactory(
            optimizer=SLSQP(maxiter=100),
            expectation=AerPauliExpectation(),
            include_custom=True,
            quantum_instance=QuantumInstance(
                backend=backend,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res_qasm = calc.solve(self.electronic_structure_problem)

        hamiltonian = self.electronic_structure_problem.second_q_ops()[0]
        qubit_op = self.qubit_converter.map(hamiltonian)

        ansatz = solver.get_solver(self.electronic_structure_problem,
                                   self.qubit_converter).ansatz
        circuit = ansatz.assign_parameters(res_qasm.raw_result.optimal_point)
        mean = calc.evaluate_operators(circuit, qubit_op)

        self.assertAlmostEqual(res_qasm.eigenenergies[0], mean[0].real)

    def _prepare_uccsd_hf(self, qubit_converter):
        initial_state = HartreeFock(self.num_spin_orbitals, self.num_particles,
                                    qubit_converter)
        ansatz = UCCSD(qubit_converter,
                       self.num_particles,
                       self.num_spin_orbitals,
                       initial_state=initial_state)

        return ansatz

    def test_uccsd_hf(self):
        """ uccsd hf test """
        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SLSQP(maxiter=100)
        backend = BasicAer.get_backend('statevector_simulator')
        solver = VQE(ansatz=ansatz,
                     optimizer=optimizer,
                     quantum_instance=QuantumInstance(backend=backend))

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)

        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=6)

    @slow_test
    def test_uccsd_hf_qasm(self):
        """ uccsd hf test with qasm_simulator. """
        qubit_converter = QubitConverter(ParityMapper())
        ansatz = self._prepare_uccsd_hf(qubit_converter)

        backend = BasicAer.get_backend('qasm_simulator')

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(ansatz=ansatz,
                     optimizer=optimizer,
                     expectation=PauliExpectation(),
                     quantum_instance=QuantumInstance(
                         backend=backend,
                         seed_simulator=algorithm_globals.random_seed,
                         seed_transpiler=algorithm_globals.random_seed))

        gsc = GroundStateEigensolver(qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0], -1.138, places=2)

    def test_uccsd_hf_aer_statevector(self):
        """ uccsd hf test with Aer statevector """
        try:
            # pylint: disable=import-outside-toplevel
            from qiskit import Aer
            backend = Aer.get_backend('statevector_simulator')
        except ImportError as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SLSQP(maxiter=100)
        solver = VQE(ansatz=ansatz,
                     optimizer=optimizer,
                     quantum_instance=QuantumInstance(backend=backend))

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=6)

    @slow_test
    def test_uccsd_hf_aer_qasm(self):
        """ uccsd hf test with Aer qasm_simulator. """
        try:
            # pylint: disable=import-outside-toplevel
            from qiskit import Aer
            backend = Aer.get_backend('qasm_simulator')
        except ImportError as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(ansatz=ansatz,
                     optimizer=optimizer,
                     expectation=PauliExpectation(),
                     quantum_instance=QuantumInstance(
                         backend=backend,
                         seed_simulator=algorithm_globals.random_seed,
                         seed_transpiler=algorithm_globals.random_seed))

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0], -1.138, places=2)

    @slow_test
    def test_uccsd_hf_aer_qasm_snapshot(self):
        """ uccsd hf test with Aer qasm_simulator snapshot. """
        try:
            # pylint: disable=import-outside-toplevel
            from qiskit import Aer
            backend = Aer.get_backend('qasm_simulator')
        except ImportError as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(ansatz=ansatz,
                     optimizer=optimizer,
                     expectation=AerPauliExpectation(),
                     quantum_instance=QuantumInstance(backend=backend))

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=3)