_lambda = _lambda_tmp / eye_norm lst_factors_ = op_factors.get_list_of_factors() op_centroids = SparseFactors([lst_factors_[1] * _lambda] + lst_factors_[2:]) return op_centroids if __name__ == "__main__": logger.info("Command line: " + " ".join(sys.argv)) log_memory_usage("Memory at startup") arguments = docopt.docopt(__doc__) paraman = ParameterManager(arguments) initialized_results = dict((v, None) for v in lst_results_header) resprinter = ResultPrinter(output_file=paraman["--output-file_resprinter"]) resprinter.add(initialized_results) resprinter.add(paraman) objprinter = ObjectiveFunctionPrinter( output_file=paraman["--output-file_objprinter"]) has_failed = False if paraman["--verbose"]: daiquiri.setup(level=logging.DEBUG) else: daiquiri.setup(level=logging.INFO) try: dataset = paraman.get_dataset() dataset["x_train"] = dataset["x_train"].astype(np.float)