type=str, default="./data/wi29.tsp", help="specify a file which contains cities's information.") parser.add_argument("--trotter_dim", type=int, default=10) parser.add_argument("--ann_para", type=float, default=1.0, help="initial annealing parameter") parser.add_argument("--ann_step", type=int, default=1000) parser.add_argument("--mc_step", type=int, default=5000) parser.add_argument("--beta", type=float, default=float(36)) parser.add_argument("--reduc_para", type=float, default=0.999) args = parser.parse_args() # prepare annealer anneal = qmc.QMC(args.trotter_dim, args.ann_para, args.ann_step, args.mc_step, args.beta, args.reduc_para) anneal.read(args.file) anneal.calc_max_distance() config_at_init_time = list(-np.ones(anneal.NCITY, dtype=np.int)) config_at_init_time[0] = 1 print("start...") t0 = time.clock() np.random.seed(100) spin = anneal.getSpinConf(config_at_init_time) LengthList = list() for t in range(anneal.ANN_STEP): for i in range(anneal.MC_STEP):
def run_qmc(config): #construct wf wavefunction = build_wf(config) #run qmc qmc.QMC(wavefunction, config).run() return