#!/usr/bin/env python import logging import qnd import qndex import font2char2word2sent2doc as f2c2w2s2d model = f2c2w2s2d.def_char2word2sent2doc() read_file = qndex.nlp.sentiment_analysis.def_read_file() train_and_evaluate = qnd.def_train_and_evaluate() def main(): logging.getLogger().setLevel(logging.INFO) train_and_evaluate(model, read_file) if __name__ == '__main__': main()
import logging import os import qnd import mnist train_and_evaluate = qnd.def_train_and_evaluate( distributed=("distributed" in os.environ)) model = mnist.def_model() def main(): logging.getLogger().setLevel(logging.INFO) train_and_evaluate(model, mnist.read_file) if __name__ == "__main__": main()
"number": number }) if env("use_dict_inputs") else (image, number)) mnist_model = mnist.def_model() def model(image, number=None, mode=tf.contrib.learn.ModeKeys.TRAIN): results = mnist_model(image, number, mode) return (tf.contrib.learn.ModelFnOps(mode, *results) if env("use_model_fn_ops") else results) train_and_evaluate = qnd.def_train_and_evaluate( batch_inputs=(not env("self_batch")), prepare_filename_queues=(not env("self_filename_queue"))) def main(): logging.getLogger().setLevel(logging.INFO) def def_input_fn(batch_fn, filename_queue_fn): def batch(*tensors): return batch_fn(*tensors) if env("self_batch") else tensors if env("self_filename_queue"): def input_fn(): return batch(*read_file(filename_queue_fn())) else:
#!/usr/bin/env python import logging import qnd import qndex import font2char2word2sent2doc as f2c2w2s2d model = f2c2w2s2d.def_font2char2word2sent2doc() read_file = qndex.nlp.sentiment_analysis.def_read_file() train_and_evaluate = qnd.def_train_and_evaluate() def main(): logging.getLogger().setLevel(logging.INFO) train_and_evaluate(model, read_file) if __name__ == '__main__': main()
length.set_shape([]) reshape = lambda sequence: tf.reshape(sequence, tf.pack([length])) return reshape(sentence), reshape(labels) return convert_text def def_read_file(): convert_text = def_convert_text() def read_file(filename_queue): key, value = tf.WholeFileReader().read(filename_queue) sentence, labels = convert_text(value) return {'key': key, 'sentence': sentence}, {'labels': labels} return read_file char_lm = font2char_lm.def_char_lm() read_file = def_read_file() train_and_evaluate = qnd.def_train_and_evaluate(batch_inputs=False) def main(): train_and_evaluate(char_lm, read_file) if __name__ == '__main__': main()