def def_font2char2word2sent2doc(): adder = add_flags() classify = qndex.def_classify() word_array = qndex.nlp.def_word_array() def model(document, label=None, *, mode, key=None): return classify( font2char2word2sent2doc( document, words=word_array(), mode=mode, fonts=font_array(), **adder.flags), label, key=key, predictions={ 'font_attentions': tf.tile( tf.expand_dims( collections.get_attentions()[0], axis=0), [tf.shape(document)[0], 1, 1, 1]), }, mode=mode, regularization_scale=qnd.FLAGS.regularization_scale) return model
def def_word2sent2doc(): adder = add_flags() classify = qndex.def_classify() def model(document, label=None, *, mode): return classify(word2sent2doc(document, word_space_size=len(qnd.FLAGS.words), **adder.flags), label, mode=mode) return model
def def_word2sent2doc(): adder = add_flags() classify = qndex.def_classify() get_words = qndex.nlp.def_words() def model(document, label=None, *, mode, key=None): return classify(word2sent2doc(document, word_space_size=len(get_words()), **adder.flags), label, key=key, mode=mode) return model
def def_char2word2sent2doc(): adder = add_flags() classify = qndex.def_classify() word_array = qndex.nlp.def_word_array() def model(document, label=None, *, mode): return classify(char2word2sent2doc(document, words=word_array(), char_space_size=len( qnd.FLAGS.chars), **adder.flags), label, mode=mode) return model
def def_word2sent2doc(): adder = add_flags() classify = qndex.def_classify() get_words = qndex.nlp.def_words() def model(document, label=None, *, mode, key=None): return classify( word2sent2doc( document, word_space_size=len(get_words()), **adder.flags), label, key=key, mode=mode, regularization_scale=qnd.FLAGS.regularization_scale) return model
def def_font2char2word2sent2doc(): adder = add_flags() classify = qndex.def_classify() word_array = qndex.nlp.def_word_array() def model(document, label=None, *, mode, key=None): return classify(font2char2word2sent2doc(document, words=word_array(), mode=mode, fonts=font_array(), **adder.flags), label, mode=mode, key=key, regularization_scale=qnd.FLAGS.regularization_scale) return model
def def_char2word2sent2doc(): adder = add_flags() adder.add_flag("char_embedding_size", type=int, default=100) classify = qndex.def_classify() word_array = qndex.nlp.def_word_array() def model(document, label=None, *, mode, key=None): return classify( char2word2sent2doc( document, words=word_array(), char_space_size=len(qnd.FLAGS.chars), **adder.flags), label, key=key, mode=mode, regularization_scale=qnd.FLAGS.regularization_scale) return model
def def_font2char2word2sent2doc(): adder = add_flags() classify = qndex.def_classify() word_array = qndex.nlp.def_word_array() def model(document, label=None, *, mode, key=None): return classify(font2char2word2sent2doc(document, words=word_array(), mode=mode, fonts=font_array(), **adder.flags), label, key=key, predictions={ 'font_attentions': tf.tile( tf.expand_dims(collections.get_attentions()[0], axis=0), [tf.shape(document)[0], 1, 1, 1]), }, mode=mode, regularization_scale=qnd.FLAGS.regularization_scale) return model