def _toSLH(self): a = Destroy(self.space) a_d = a.adjoint() S = identity_matrix(1) # Include the Hamiltonian only with the first port of the kerr cavity circuit object H = self.Delta * a_d * a + (I / 2) * (self.alpha * a_d * a_d - self.alpha.conjugate() * a * a) L = Matrix([[sqrt(self.kappa) * a]]) return SLH(S, L, H)
def _toSLH(self): a = Destroy(self.space) a_d = a.adjoint() S = identity_matrix(1) kappas = [self.kappa_1, self.kappa_2, self.kappa_3] kappa = kappas[self.sub_index] L = Matrix([[sqrt(kappa) * a]]) # Include the Hamiltonian only with the first port of the kerr cavity circuit object H = self.Delta * (a_d * a) + self.chi * (a_d * a_d * a * a) if self.sub_index == 0 else 0 return SLH(S, L, H)
def _toSLH(self): a = Destroy(self.space) a_d = a.adjoint() S = identity_matrix(1) kappas = [self.kappa_1, self.kappa_2, self.kappa_3] kappa = kappas[self.sub_index] L = Matrix([[sqrt(kappa) * a]]) # Include the Hamiltonian only with the first port of the kerr cavity circuit object H = self.Delta * (a_d * a) + self.chi * ( a_d * a_d * a * a) if self.sub_index == 0 else 0 return SLH(S, L, H)
def _toSLH(self): a = Destroy(self.space) a_d = a.adjoint() S = identity_matrix(1) if self.sub_index == 0: # Include the Hamiltonian only with the first port of the kerr cavity circuit object H = self.Delta * (a_d * a) L = Matrix([[sqrt(self.kappa_1) * a]]) else: H = 0 L = Matrix([[sqrt(self.kappa_2) * a]]) return SLH(S, L, H)
def _toSLH(self): sigma_p = LocalSigma(self.tls_space, 'h','g') sigma_m = sigma_p.adjoint() a = Destroy(self.fock_space) a_d = a.adjoint() #coupling to external mode L = sqrt(self.kappa) * a H = self.Delta_f * a_d * a + self.Delta_a * sigma_p * sigma_m + I * self.g * (sigma_p * a - sigma_m * a_d) return SLH(Matrix([[1]]), Matrix([[L]]), H)
def _toSLH(self): sigma_p = LocalSigma(self.tls_space, 'h', 'g') sigma_m = sigma_p.adjoint() a = Destroy(self.fock_space) a_d = a.adjoint() #coupling to external mode L = sqrt(self.kappa) * a H = self.Delta_f * a_d * a + self.Delta_a * sigma_p * sigma_m + I * self.g * ( sigma_p * a - sigma_m * a_d) return SLH(Matrix([[1]]), Matrix([[L]]), H)
def _toSLH(self): if self.sub_index == 0: sigma_p = LocalSigma(self.tls_space, 'h','g') sigma_m = sigma_p.adjoint() a = Destroy(self.fock_space) a_d = a.adjoint() #coupling to external mode L = sqrt(self.kappa_1) * a H = self.Delta_f * a_d * a + self.Delta_a * sigma_p * sigma_m + I * self.g * (sigma_p * a - sigma_m * a_d) elif self.sub_index == 1: a = Destroy(self.fock_space) L = sqrt(self.kappa_2) * a H = ZeroOperator return SLH(Matrix([[1]]), Matrix([[L]]), H)