def get_dq(self, q, e1, J1, e2, J2, e3, J3, e4, J4):
        de1 = self.lambda1 * e1
        de2 = self.lambda2 * e2
        de3 = self.lambda3 * e3
        de4 = self.lambda4 * e4

        W = self.w1 * np.dot(J1.T, J1) + self.w2 * np.dot(
            J2.T, J2) + self.w3 * np.dot(J3.T, J3) + self.w4 * np.dot(
                J4.T, J4)
        p = -2 * (self.w1 * np.dot(J1.T, de1) + self.w2 * np.dot(J2.T, de2) +
                  self.w3 * np.dot(J3.T, de3) + self.w4 * np.dot(J4.T, de4))

        lower_limits = np.maximum((self.qmin - q[7:]) / self.dt, self.dqmin)
        upper_limits = np.minimum((self.qmax - q[7:]) / self.dt, self.dqmax)

        lower_limits = np.hstack((self.lfb, lower_limits))
        upper_limits = np.hstack((self.ufb, upper_limits))

        # Solver
        solver = QProblemB(19)
        options = Options()
        options.setToMPC()
        options.printLevel = PrintLevel.LOW
        solver.setOptions(options)

        nWSR = np.array([10])
        solver.init(W, p, lower_limits, upper_limits, nWSR)
        dq = np.zeros(19)
        solver.getPrimalSolution(dq)
        return dq
    def test_m44_mpc_sparse(self):
        test_name = 'mm44_mpc_sparse.txt'
        print("Test: ", test_name)

        # QP Options
        options = Options()
        options.setToMPC()
        options.printLevel = PrintLevel.NONE

        isSparse = True
        useHotstarts = False

        # run QP benchmarks
        results = run_benchmarks(benchmarks, options, isSparse, useHotstarts,
                                 self.nWSR, self.cpu_time, self.TOL)

        # print and write results
        string = results2str(results)
        print(string)
        write_results(test_name, string)

        assert get_nfail(results) <= 19, 'One ore more tests failed.'
    def test_m44_mpc_sparse(self):
        test_name ='mm44_mpc_sparse.txt'
        print("Test: ", test_name)

        # QP Options
        options = Options()
        options.setToMPC()
        options.printLevel = PrintLevel.NONE

        isSparse = True
        useHotstarts = False

        # run QP benchmarks
        results = run_benchmarks(benchmarks, options, isSparse, useHotstarts,
                                 self.nWSR, self.cpu_time, self.TOL)

        # print and write results
        string = results2str(results)
        print(string)
        write_results(test_name, string)

        assert get_nfail(results) <= 19, 'One ore more tests failed.'
Esempio n. 4
0
    def solve(self, i, vref):
        """build the problem and solve it

      """

        #we build the N-sized reference vectors

        if (i + self.N < self.ntime + 1):
            #take the values stored in the rows (i to N)
            vref_pred = vref[i:i + self.N, :]
        else:
            # If the matrix doesn't have N rows ahead, then repeat the last row to fill the void
            vref_pred = np.vstack(
                (vref[i:self.ntime, :],
                 np.dot(np.ones((self.N - self.ntime + i, 1)),
                        np.expand_dims(vref[self.ntime - 1, :], axis=0))))

        #get condensed matrices (constant from on step to another)
        [Sx, Sy, Svx, Svy, St, Svt, Scx, Scy, Ux, Uu, D_diag] = self.condense()

        #build matrix V
        V, V_dash = self.get_walk_matrices(i)

        ##################stuff for the solver###############################

        #build constraint vectors (changing from one step to another)

        #footsteps and CoP upper bounds

        #ubounds CoP x position
        ubounds1 = np.vstack(([self.CoP_ubounds[0] for _ in range(self.N)]))
        ubounds1 = ubounds1 - np.dot(np.dot(Scx, D_diag), np.dot(
            Ux, self.x.T)) + np.dot(V, self.f_current[0][0])

        #ubounds CoP y position
        ubounds2 = np.vstack([self.CoP_ubounds[1] for _ in range(self.N)])
        ubounds2 = ubounds2 - np.dot(np.dot(Scy, D_diag), np.dot(
            Ux, self.x.T)) + np.dot(V, self.f_current[0][1])

        #ubounds feet x position
        ubounds3 = np.vstack((self.feet_ubounds[0], self.feet_ubounds[2]))
        ubounds3 = ubounds3 + np.vstack(
            (np.dot(self.current_rotation[np.newaxis, 0, :],
                    self.f_current[0, 0:2, np.newaxis]),
             np.zeros((self.future_steps - 1, 1))))

        #ubounds feet y position
        ubounds4 = np.vstack((self.feet_ubounds[1], self.feet_ubounds[3]))
        ubounds4 = ubounds4 + np.vstack(
            (np.dot(self.current_rotation[np.newaxis, 1, :],
                    self.f_current[0, 0:2, np.newaxis]),
             np.zeros((self.future_steps - 1, 1))))

        #ubounds feet angles
        ubounds5 = self.feet_angle_ubound * np.ones((self.future_steps, 1))
        ubounds5 = ubounds5 + np.vstack(
            (self.f_current[np.newaxis, np.newaxis, 0,
                            2], np.zeros((self.future_steps - 1, 1))))

        ubA = np.vstack((ubounds1, ubounds2, ubounds3, ubounds4, ubounds5))

        #footsteps and CoP lower bounds

        #lbounds CoP x position
        lbounds1 = np.vstack([self.CoP_lbounds[0] for _ in range(self.N)])
        lbounds1 = lbounds1 - np.dot(np.dot(Scx, D_diag), np.dot(
            Ux, self.x.T)) + np.dot(V, self.f_current[0][0])

        #lbounds CoP y position
        lbounds2 = np.vstack([self.CoP_lbounds[1] for _ in range(self.N)])
        lbounds2 = lbounds2 - np.dot(np.dot(Scy, D_diag), np.dot(
            Ux, self.x.T)) + np.dot(V, self.f_current[0][1])

        #lbounds feet x position
        lbounds3 = np.vstack((self.feet_lbounds[0], self.feet_lbounds[2]))
        lbounds3 = lbounds3 + np.vstack(
            (np.dot(self.current_rotation[np.newaxis, 0, :],
                    self.f_current[0, 0:2, np.newaxis]),
             np.zeros((self.future_steps - 1, 1))))

        #lbounds feet y position
        lbounds4 = np.vstack((self.feet_lbounds[1], self.feet_lbounds[3]))
        lbounds4 = lbounds4 + np.vstack(
            (np.dot(self.current_rotation[np.newaxis, 1, :],
                    self.f_current[0, 0:2, np.newaxis]),
             np.zeros((self.future_steps - 1, 1))))

        #lbounds feet angles
        lbounds5 = self.feet_angle_lbound * np.ones((self.future_steps, 1))
        lbounds5 = lbounds5 + np.vstack(
            (self.f_current[np.newaxis, np.newaxis, 0,
                            2], np.zeros((self.future_steps - 1, 1))))

        lbA = np.vstack((lbounds1, lbounds2, lbounds3, lbounds4, lbounds5))

        #big A matrix (constraints matrix)
        A = np.zeros((self.n_constraints, self.n_dec))

        #A elements for constraints for CoP position
        A[0:self.N, :] = np.hstack(
            (np.dot(np.dot(Scx, D_diag),
                    Uu), -V_dash, np.zeros((self.N, 2 * self.future_steps))))
        A[self.N:2 * self.N, :] = np.hstack(
            (np.dot(np.dot(Scy, D_diag),
                    Uu), np.zeros((self.N, self.future_steps)), -V_dash,
             np.zeros((self.N, self.future_steps))))

        A[2 * self.N, 3 * self.N] = self.current_rotation[0, 0]
        A[2 * self.N, 3 * self.N + 2] = self.current_rotation[0, 1]

        A[2 * self.N + 1, 3 * self.N] = -self.current_rotation[0, 0]
        A[2 * self.N + 1, 3 * self.N + 1] = self.current_rotation[0, 0]
        A[2 * self.N + 1, 3 * self.N + 2] = -self.current_rotation[0, 1]
        A[2 * self.N + 1, 3 * self.N + 3] = self.current_rotation[0, 1]

        A[2 * self.N + 2, 3 * self.N] = self.current_rotation[1, 0]
        A[2 * self.N + 2, 3 * self.N + 2] = self.current_rotation[1, 1]

        A[2 * self.N + 3, 3 * self.N] = -self.current_rotation[1, 0]
        A[2 * self.N + 3, 3 * self.N + 1] = self.current_rotation[1, 0]
        A[2 * self.N + 3, 3 * self.N + 2] = -self.current_rotation[1, 1]
        A[2 * self.N + 3, 3 * self.N + 3] = self.current_rotation[1, 1]

        #max angle between feet constraints
        A[2 * self.N + 4, 3 * self.N + 4] = 1
        A[2 * self.N + 5, 3 * self.N + 4] = -1
        A[2 * self.N + 5, 3 * self.N + 5] = 1

        #QP solver takes one dim arrays
        lbA = lbA.reshape((lbA.shape[0], ))
        ubA = ubA.reshape((ubA.shape[0], ))

        #############################################################################HESSIAN AND GRADIENT####################

        H = np.zeros((self.n_dec, self.n_dec))
        H[0:3*self.N, 0:3*self.N] = self.alpha*np.ones((3*self.N, 3*self.N)) + self.beta*np.dot(np.dot(Svx, Uu).T, np.dot(Svx, Uu)) + self.beta*np.dot(np.dot(Svy, Uu).T, np.dot(Svy, Uu)) + \
                                        + self.beta*np.dot(np.dot(Svt, Uu).T, np.dot(Svt, Uu)) + self.gamma*np.dot(np.dot(np.dot(Scx, D_diag), Uu).T, np.dot(np.dot(Scx, D_diag), Uu)) + \
                                        + self.gamma*np.dot(np.dot(np.dot(Scy, D_diag), Uu).T, np.dot(np.dot(Scy, D_diag), Uu)) + self.gamma*np.dot(np.dot(St, Uu).T, np.dot(St, Uu))

        H[0:3 * self.N, 3 * self.N:] = np.hstack(
            (-self.gamma * np.dot(np.dot(np.dot(Scx, D_diag), Uu).T, V_dash),
             -self.gamma * np.dot(np.dot(np.dot(Scy, D_diag), Uu).T, V_dash),
             -self.gamma * np.dot(np.dot(St, Uu).T, V_dash)))
        H[3 * self.N:, 0:3 * self.N] = np.vstack(
            (-self.gamma * np.dot(V_dash.T, np.dot(np.dot(Scx, D_diag), Uu)),
             -self.gamma * np.dot(V_dash.T, np.dot(np.dot(Scy, D_diag), Uu)),
             -self.gamma * np.dot(V_dash.T, np.dot(St, Uu))))
        H[3 * self.N:, 3 * self.N:] = self.gamma * block_diag(
            np.dot(V_dash.T, V_dash), np.dot(V_dash.T, V_dash),
            np.dot(V_dash.T, V_dash))

        g = np.zeros((self.n_dec, 1))
        g[0:3*self.N, :] = self.beta*np.dot(np.dot(Svx, Uu).T, np.dot(np.dot(Svx, Ux), self.x.T) - vref_pred[:, 0][np.newaxis].T) + self.beta*np.dot(np.dot(Svy, Uu).T, np.dot(np.dot(Svy, Ux), self.x.T) - vref_pred[:, 1][np.newaxis].T) + \
                               self.beta*np.dot(np.dot(Svt, Uu).T, np.dot(np.dot(Svt, Ux), self.x.T) - vref_pred[:, 2][np.newaxis].T) + self.gamma*np.dot(np.dot(np.dot(Scx, D_diag), Uu).T, np.dot(np.dot(np.dot(Scx, D_diag), Ux), self.x.T) - np.dot(V, self.f_current[0][0])) + \
                               + self.gamma*np.dot(np.dot(np.dot(Scy, D_diag), Uu).T, np.dot(np.dot(np.dot(Scy, D_diag), Ux), self.x.T) - np.dot(V, self.f_current[0][1])) + self.gamma*np.dot(np.dot(St, Uu).T, np.dot(np.dot(St, Ux), self.x.T)) - \
                               - self.gamma*np.dot(np.dot(St, Uu).T, np.dot(V, self.f_current[0][2]))

        g[3 * self.N:50, :] = -self.gamma * np.dot(
            V_dash.T,
            np.dot(np.dot(np.dot(Scx, D_diag), Ux), self.x.T) -
            np.dot(V, self.f_current[0][0]))
        g[50:52, :] = -self.gamma * np.dot(
            V_dash.T,
            np.dot(np.dot(np.dot(Scy, D_diag), Ux), self.x.T) -
            np.dot(V, self.f_current[0][1]))
        g[52:, :] = -self.gamma * np.dot(
            V_dash.T,
            np.dot(np.dot(St, Ux), self.x.T) - np.dot(V, self.f_current[0][2]))

        g = g.reshape((g.shape[0], ))

        ###########################################################################################################################

        #solver options - MPC
        myOptions = Options()
        myOptions.setToMPC()
        self.QP.setOptions(myOptions)

        #setting lb and ub to huge numbers - otherwise solver gives errors
        lb = -1000000000. * np.ones((self.n_dec, ))
        ub = 1000000000. * np.ones((self.n_dec, ))

        #solve QP - QP.init()
        self.QP.init(H, g, A, lb, ub, lbA, ubA, nWSR=np.array([1000000]))

        #get the solution (getPrimalSolution())
        x_opt = np.zeros(self.n_dec)
        self.QP.getPrimalSolution(x_opt)

        #update the state of the system, CoP and the footstep (take the first elements of the solution)
        self.controls = np.array([[x_opt[0], x_opt[1], x_opt[2]]])

        self.x = (np.dot(self.model.A(self.T), self.x.T) +
                  np.dot(self.model.B(self.T), self.controls.T)).T
        self.CoP = np.dot(self.model.D(self.T), self.x.T)

        #first future step
        self.f_future = np.array([[
            x_opt[3 * self.N], x_opt[3 * self.N + self.future_steps],
            x_opt[3 * self.N + 2 * self.future_steps]
        ]])

        #change the current (every 8 samples except the first step) foot position
        if np.mod(i, self.samples_per_step) == self.samples_per_step - 2:
            self.f_current = self.f_future
            #rotate the footstep bounds
            self.current_rotation = np.array(
                [[np.cos(self.f_current[0, 2]),
                  np.sin(self.f_current[0, 2])],
                 [-np.sin(self.f_current[0, 2]),
                  np.cos(self.f_current[0, 2])]])
            #swap footstep constraints
            tmp1, tmp2 = self.feet_ubounds[1], self.feet_lbounds[1]
            self.feet_ubounds[1], self.feet_lbounds[1] = self.feet_ubounds[
                3], self.feet_lbounds[3]
            self.feet_ubounds[3], self.feet_lbounds[3] = tmp1, tmp2

        #return all the variables of interest
        return [self.x, self.f_current, self.CoP, self.controls]
Esempio n. 5
0
class ClassicGenerator(BaseGenerator):
    """
    Reimplementation of current state-of-the-art pattern
    generator for HRP-2 of CNRS-LAAS, Toulouse.

    Solve QPs for position and orientation of CoM and feet
    independently of each other in each timestep.
    First solve  for orientations, then solve for the postions.
    """
    def __init__(
        self, N=16, T=0.1, T_step=0.8,
        fsm_state='D', fsm_sl=1
    ):
        """
        Initialize pattern generator matrices through base class
        and allocate two QPs one for optimzation of orientation and
        one for position of CoM and feet.

        """
        super(ClassicGenerator, self).__init__(
            N, T, T_step, fsm_state, fsm_sl
        )
        # TODO for speed up one can define members of BaseGenerator as
        #      direct views of QP data structures according to walking report
        #      Maybe do that later!

        # The pattern generator has to solve the following kind of
        # problem in each iteration

        # min_x 1/2 * x^T * H(w0) * x + x^T g(w0)
        # s.t.   lbA(w0) <= A(w0) * x <= ubA(w0)
        #         lb(w0) <=         x <= ub(wo)

        # Because of varying H and A, we have to use the
        # SQPProblem class, which supports this kind of QPs

        # rename for convenience
        N  = self.N
        nf = self.nf

        # define some qpOASES specific things
        self.cpu_time = 0.1 # upper bound on CPU time, 0 is no upper limit
        self.nwsr     = 100      # number of working set recalculations
        self.options = Options()
        self.options.setToMPC()
        self.options.printLevel = PrintLevel.LOW

        # FOR ORIENTATIONS
        # define dimensions
        self.ori_nv = 2*self.N
        self.ori_nc = (
              self.nc_fvel_eq
            + self.nc_fpos_ineq
            + self.nc_fvel_ineq
        )

        # setup problem
        self.ori_dofs = numpy.zeros(self.ori_nv)
        self.ori_qp = SQProblem(self.ori_nv, self.ori_nc)
        self.ori_qp.setOptions(self.options) # load NMPC options

        self.ori_H   =  numpy.zeros((self.ori_nv,self.ori_nv))
        self.ori_A   =  numpy.zeros((self.ori_nc,self.ori_nv))
        self.ori_g   =  numpy.zeros((self.ori_nv,))
        self.ori_lb  = -numpy.ones((self.ori_nv,))*1e+08
        self.ori_ub  =  numpy.ones((self.ori_nv,))*1e+08
        self.ori_lbA = -numpy.ones((self.ori_nc,))*1e+08
        self.ori_ubA =  numpy.ones((self.ori_nc,))*1e+08

        self._ori_qp_is_initialized = False

        # save computation time and working set recalculations
        self.ori_qp_nwsr    = 0.0
        self.ori_qp_cputime = 0.0

        # FOR POSITIONS
        # define dimensions
        self.pos_nv = 2*(self.N + self.nf)
        self.pos_nc = (
            self.nc_cop
            + self.nc_foot_position
            + self.nc_fchange_eq
        )

        # setup problem
        self.pos_dofs = numpy.zeros(self.pos_nv)
        self.pos_qp = SQProblem(self.pos_nv, self.pos_nc)
        self.pos_qp.setOptions(self.options)

        self.pos_H   = numpy.zeros((self.pos_nv,self.pos_nv))
        self.pos_A   = numpy.zeros((self.pos_nc,self.pos_nv))
        self.pos_g   = numpy.zeros((self.pos_nv,))
        self.pos_lb  = -numpy.ones((self.pos_nv,))*1e+08
        self.pos_ub  =  numpy.ones((self.pos_nv,))*1e+08
        self.pos_lbA = -numpy.ones((self.pos_nc,))*1e+08
        self.pos_ubA =  numpy.ones((self.pos_nc,))*1e+08

        self._pos_qp_is_initialized = False

        # save computation time and working set recalculations
        self.pos_qp_nwsr    = 0.0
        self.pos_qp_cputime = 0.0

        # dummy matrices
        self._ori_Q = numpy.zeros((2*self.N, 2*self.N))
        self._ori_p = numpy.zeros((2*self.N,))
        self._pos_Q = numpy.zeros((self.N + self.nf, self.N + self.nf))
        self._pos_p = numpy.zeros((self.N + self.nf,))

        # add additional keys that should be saved
        self._data_keys.append('ori_qp_nwsr')
        self._data_keys.append('ori_qp_cputime')
        self._data_keys.append('pos_qp_nwsr')
        self._data_keys.append('pos_qp_cputime')

        # reinitialize plot data structure
        self.data = PlotData(self)

    def solve(self):
        """ Process and solve problem, s.t. pattern generator data is consistent """
        self._preprocess_solution()
        self._solve_qp()
        self._postprocess_solution()

    def _preprocess_solution(self):
        """ Update matrices and get them into the QP data structures """
        # rename for convenience
        N  = self.N
        nf = self.nf

        # ORIENTATIONS

        # initialize with actual values, else take last known solution
        # NOTE for warmstart last solution is taken from qpOASES internal memory
        if not self._ori_qp_is_initialized:
            # ori_dofs = ( dddF_k_qR )
            #            ( dddF_k_qL )

            self.ori_dofs[:N] = self.dddF_k_qR
            self.ori_dofs[N:] = self.dddF_k_qL

            # TODO guess initial active set
            # this requires changes to the python interface

        # define QP matrices

        # H = ( Q_k_q )
        self._update_ori_Q() # updates values in _Q
        self.ori_H  [:,:] = self._ori_Q

        # g = ( p_k_q )
        self._update_ori_p() # updates values in _p
        self.ori_g  [:]   = self._ori_p

        # ORIENTATION LINEAR CONSTRAINTS
        # velocity constraints on support foot to freeze movement
        a = 0
        b = self.nc_fvel_eq
        self.ori_A  [a:b] = self.A_fvel_eq
        self.ori_lbA[a:b] = self.B_fvel_eq
        self.ori_ubA[a:b] = self.B_fvel_eq

        # box constraints for maximum orientation change
        a = self.nc_fvel_eq
        b = self.nc_fvel_eq + self.nc_fpos_ineq
        self.ori_A  [a:b] = self.A_fpos_ineq
        self.ori_lbA[a:b] = self.lbB_fpos_ineq
        self.ori_ubA[a:b] = self.ubB_fpos_ineq

        # box constraints for maximum angular velocity
        a = self.nc_fvel_eq + self.nc_fpos_ineq
        b = self.nc_fvel_eq + self.nc_fpos_ineq + self.nc_fvel_ineq
        self.ori_A  [a:b] = self.A_fvel_ineq
        self.ori_lbA[a:b] = self.lbB_fvel_ineq
        self.ori_ubA[a:b] = self.ubB_fvel_ineq

        # ORIENTATION BOX CONSTRAINTS
        #self.ori_lb [...] = 0.0
        #self.ori_ub [...] = 0.0

        # POSITIONS

        # initialize with actual values, else take last known solution
        # NOTE for warmstart last solution is taken from qpOASES internal memory
        if not self._pos_qp_is_initialized:
            # pos_dofs = ( dddC_kp1_x )
            #            (      F_k_x )
            #            ( dddC_kp1_y )
            #            (      F_k_y )

            self.pos_dofs[0  :0+N   ] = self.dddC_k_x
            self.pos_dofs[0+N:0+N+nf] = self.F_k_x
            a = N+nf
            self.pos_dofs[a  :a+N   ] = self.dddC_k_y
            self.pos_dofs[a+N:a+N+nf] = self.F_k_y

            # TODO guess initial active set
            # this requires changes to the python interface

        # define QP matrices

        # H = ( Q_k   0 )
        #     (   0 Q_k )
        self._update_pos_Q() # updates values in _Q
        self.pos_H  [ :N+nf,  :N+nf] = self._pos_Q
        self.pos_H  [-N-nf:, -N-nf:] = self._pos_Q

        # g = ( p_k_x )
        #     ( p_k_y )
        self._update_pos_p('x') # updates values in _p
        self.pos_g  [ :N+nf] = self._pos_p
        self._update_pos_p('y') # updates values in _p
        self.pos_g  [-N-nf:] = self._pos_p

        # lbA <= A x <= ubA
        # (       ) <= (    Acop ) <= (    Bcop )
        # (eqBfoot) <= ( eqAfoot ) <= ( eqBfoot )
        # (       ) <= (   Afoot ) <= (   Bfoot )

        # CoP constraints
        a = 0
        b = self.nc_cop
        self.pos_A  [a:b] = self.Acop
        self.pos_lbA[a:b] = self.lbBcop
        self.pos_ubA[a:b] = self.ubBcop

        #foot inequality constraints
        a = self.nc_cop
        b = self.nc_cop + self.nc_foot_position
        self.pos_A  [a:b] = self.Afoot
        self.pos_lbA[a:b] = self.lbBfoot
        self.pos_ubA[a:b] = self.ubBfoot

        #foot equality constraints
        a = self.nc_cop + self.nc_foot_position
        b = self.nc_cop + self.nc_foot_position + self.nc_fchange_eq
        self.pos_A  [a:b] = self.eqAfoot
        self.pos_lbA[a:b] = self.eqBfoot
        self.pos_ubA[a:b] = self.eqBfoot

        # NOTE: they stay plus minus infinity, i.e. 1e+08
        #self.pos_lb [...] = 0.0
        #self.pos_ub [...] = 0.0

    def _update_ori_Q(self):
        '''
        Update Hessian block Q according to walking report

        min a/2 || dC_kp1_q_ref - dF_k_q ||_2^2
        Q = ( QR  0 )
            (  0 QL )
        QR = ( a * Pvu^T * E_FR^T * E_FR * Pvu )
        '''
        # rename for convenience
        N  = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta  = self.b
        gamma = self.c
        delta = self.d

        # matrices
        E_FR = self.E_FR
        E_FL = self.E_FL

        Pvu = self.Pvu

        # assemble Hessian matrix
        # QR = ( a * Pvu^T * E_FR^T * E_FR * Pvu )
        a = 0; b = N
        c = 0; d = N
        QR = self._ori_Q[a:b,c:d]
        QR[...] = alpha * Pvu.transpose().dot(E_FR.transpose()).dot(E_FR).dot(Pvu)

        # QL = ( a * Pvu^T * E_FL^T * E_FL * Pvu )
        # Q = ( * , * )
        #     ( * ,[*])
        a = N; b = 2*N
        c = N; d = 2*N
        QL = self._ori_Q[a:b,c:d]
        QL[...] = alpha * Pvu.transpose().dot(E_FL.transpose()).dot(E_FL).dot(Pvu)

    def _update_ori_p(self):
        """
        Update pass gradient block p according to walking report

        min a/2 || dC_kp1_q_ref - dF_k_q ||_2^2
        p = ( pR )
            ( pL )
        pR = ( a * Pvu^T * E_FR^T * (E_FR * Pvs * f_k_qR - dC_kp1_q_ref[N/2] )
        """
        # rename for convenience
        N  = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta  = self.b
        gamma = self.c

        # matrices
        E_FR = self.E_FR
        E_FL = self.E_FL

        f_k_qR = self.f_k_qR
        f_k_qL = self.f_k_qL

        Pvs   = self.Pvs
        Pvu   = self.Pvu

        dC_kp1_q_ref = self.dC_kp1_q_ref

        # pR = ( a * Pvu^T * E_FL^T * (E_FL * Pvs * f_k_qL + dC_kp1_q_ref) )
        # p = ([*]) =
        #     ( * )
        a = 0; b = N
        self._ori_p[a:b] = \
            alpha * Pvu.transpose().dot(E_FR.transpose()).dot(E_FR.dot(Pvs).dot(f_k_qR) - dC_kp1_q_ref)

        # p = ( * ) =
        #     ([*])
        a = N; b = 2*N
        self._ori_p[a:b] = \
            alpha * Pvu.transpose().dot(E_FL.transpose()).dot(E_FL.dot(Pvs).dot(f_k_qL) - dC_kp1_q_ref)

    def _update_pos_Q(self):
        '''
        Update Hessian block Q according to walking report

        Q = ( a*Pvu*Pvu + b*Ppu*E*T*E*Ppu + c*Pzu*Pzu + d*I, -c*Pzu*V_kp1  )
            (                                  -c*Pzu*V_kp1, c*V_kp1*V_kp1 )
        '''
        # rename for convenience
        N  = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta  = self.b
        gamma = self.c
        delta = self.d

        # cast matrices for convenience
        Ppu   = numpy.asmatrix(self.Ppu)
        Pvu   = numpy.asmatrix(self.Pvu)
        Pzu   = numpy.asmatrix(self.Pzu)
        V_kp1 = numpy.asmatrix(self.V_kp1)

        # Q = ([*], * ) = a*Pvu*Pvu + b*Ppu*E*E*Ppu + c*Pzu*Pzu + d*I
        #     ( * , * )
        a = 0; b = N
        c = 0; d = N
        self._pos_Q[a:b,c:d] = alpha * Pvu.transpose() * Pvu \
                         + gamma * Pzu.transpose() * Pzu \
                         + delta * numpy.eye(N)

        # Q = ( * ,[*])
        #     ( * , * )
        a = 0; b = N
        c = N; d = N+nf
        self._pos_Q[a:b,c:d] = -gamma * Pzu.transpose() * V_kp1

        # Q = (  * , * ) = ( * , [*] )^T
        #     ( [*], * )   ( * ,  *  )
        dummy = self._pos_Q[a:b,c:d]
        a = N; b = N+nf
        c = 0; d = N
        self._pos_Q[a:b,c:d] = dummy.transpose()

        # Q = ( * , * )
        #     ( * ,[*])
        a = N; b = N+nf
        c = N; d = N+nf
        self._pos_Q[a:b,c:d] = gamma * V_kp1.transpose() * V_kp1

    def _update_pos_p(self, case=None):
        """
        Update pass gradient block p according to walking report

        p = ( a*Pvu*(Pvs*ck - Refk+1) + b*Ppu*E*(E*Pps*cx - Refk+1) + c*Pzu*(Pzs*ck - vk+1*fk )
            (                                                       -c*Vk+1*(Pzs*ck - vk+1*fk )
        """
        if case == 'x':
            f_k = self.f_k_x

            c_k        = utility.cast_array_as_matrix(self.c_k_x)
            dC_kp1_ref = utility.cast_array_as_matrix(self.dC_kp1_x_ref)

        elif case == 'y':
            f_k = self.f_k_y

            c_k        = utility.cast_array_as_matrix(self.c_k_y)
            dC_kp1_ref = utility.cast_array_as_matrix(self.dC_kp1_y_ref)
        else:
            err_str = 'Please use either case "x" or "y" for this routine'
            raise AttributeError(err_str)

        # rename for convenience
        N  = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta  = self.b
        gamma = self.c

        # matrices
        v_kp1 = utility.cast_array_as_matrix(self.v_kp1)

        Pvs   = numpy.asmatrix(self.Pvs)
        Pvu   = numpy.asmatrix(self.Pvu)
        Pps   = numpy.asmatrix(self.Pps)
        Ppu   = numpy.asmatrix(self.Ppu)
        Pzs   = numpy.asmatrix(self.Pzs)
        Pzu   = numpy.asmatrix(self.Pzu)
        V_kp1 = numpy.asmatrix(self.V_kp1)

        # p = ([*]) =
        #     ( * )
        a = 0; b = N
        self._pos_p[a:b] = (
              alpha * Pvu.transpose() *(Pvs*c_k - dC_kp1_ref)
            + gamma * Pzu.transpose() *(Pzs*c_k - v_kp1*f_k)
            #+ b*Ppu.transpose() * E.transpose() * E * Ppu \
        ).ravel()

        # p = ( * ) =
        #     ([*])
        a = N; b = N+nf
        self._pos_p[a:b] = (
            -gamma * V_kp1.transpose() * (Pzs*c_k - v_kp1*f_k)
        ).ravel()

    def _solve_qp(self):
        """
        Solve QP first run with init functionality and other runs with warmstart
        """
        #sys.stdout.write('Solve for orientations:\n')
        if not self._ori_qp_is_initialized:
            ret, nwsr, cputime = self.ori_qp.init(
                self.ori_H, self.ori_g, self.ori_A,
                self.ori_lb, self.ori_ub,
                self.ori_lbA, self.ori_ubA,
                self.nwsr, self.cpu_time
            )
            self._ori_qp_is_initialized = True
        else:
            ret, nwsr, cputime = self.ori_qp.hotstart(
                self.ori_H, self.ori_g, self.ori_A,
                self.ori_lb, self.ori_ub,
                self.ori_lbA, self.ori_ubA,
                self.nwsr, self.cpu_time
            )

        # orientation primal solution
        self.ori_qp.getPrimalSolution(self.ori_dofs)

        # save qp solver data
        self.ori_qp_nwsr    = nwsr          # working set recalculations
        self.ori_qp_cputime = cputime*1000. # in milliseconds

        #sys.stdout.write('Solve for positions:\n')
        if not self._pos_qp_is_initialized:
            ret, nwsr, cputime = self.pos_qp.init(
                self.pos_H, self.pos_g, self.pos_A,
                self.pos_lb, self.pos_ub,
                self.pos_lbA, self.pos_ubA,
                self.nwsr, self.cpu_time
            )
            self._pos_qp_is_initialized = True
        else:
            ret, nwsr, cputime = self.pos_qp.hotstart(
                self.pos_H, self.pos_g, self.pos_A,
                self.pos_lb, self.pos_ub,
                self.pos_lbA, self.pos_ubA,
                self.nwsr, self.cpu_time
            )

        # position primal solution
        self.pos_qp.getPrimalSolution(self.pos_dofs)

        # save qp solver data
        self.pos_qp_nwsr    = nwsr          # working set recalculations
        self.pos_qp_cputime = cputime*1000. # in milliseconds

    def _postprocess_solution(self):
        """ Get solution and put it back into generator data structures """
        # rename for convenience
        N  = self.N
        nf = self.nf

        # extract dofs
        # ori_dofs = ( dddF_k_qR )
        #            ( dddF_k_qL )

        self.dddF_k_qR[:] = self.ori_dofs[:N]
        self.dddF_k_qL[:] = self.ori_dofs[N:]

        # extract dofs
        # pos_dofs = ( dddC_kp1_x )
        #            (      F_k_x )
        #            ( dddC_kp1_y )
        #            (      F_k_y )
        self.dddC_k_x[:] = self.pos_dofs[0  :0+N   ]
        self.F_k_x[:]    = self.pos_dofs[0+N:0+N+nf]
        a = N + nf
        self.dddC_k_y[:] = self.pos_dofs[a  :a+N   ]
        self.F_k_y[:]    = self.pos_dofs[a+N:a+N+nf]
Esempio n. 6
0
class ClassicGenerator(BaseGenerator):
    """
    Reimplementation of current state-of-the-art pattern
    generator for HRP-2 of CNRS-LAAS, Toulouse.

    Solve QPs for position and orientation of CoM and feet
    independently of each other in each timestep.
    First solve  for orientations, then solve for the postions.
    """
    def __init__(self, N=16, T=0.1, T_step=0.8, fsm_state='D', fsm_sl=1):
        """
        Initialize pattern generator matrices through base class
        and allocate two QPs one for optimzation of orientation and
        one for position of CoM and feet.

        """
        super(ClassicGenerator, self).__init__(N, T, T_step, fsm_state, fsm_sl)
        # TODO for speed up one can define members of BaseGenerator as
        #      direct views of QP data structures according to walking report
        #      Maybe do that later!

        # The pattern generator has to solve the following kind of
        # problem in each iteration

        # min_x 1/2 * x^T * H(w0) * x + x^T g(w0)
        # s.t.   lbA(w0) <= A(w0) * x <= ubA(w0)
        #         lb(w0) <=         x <= ub(wo)

        # Because of varying H and A, we have to use the
        # SQPProblem class, which supports this kind of QPs

        # rename for convenience
        N = self.N
        nf = self.nf

        # define some qpOASES specific things
        self.cpu_time = 0.1  # upper bound on CPU time, 0 is no upper limit
        self.nwsr = 100  # number of working set recalculations
        self.options = Options()
        self.options.setToMPC()
        self.options.printLevel = PrintLevel.LOW

        # FOR ORIENTATIONS
        # define dimensions
        self.ori_nv = 2 * self.N
        self.ori_nc = (self.nc_fvel_eq + self.nc_fpos_ineq + self.nc_fvel_ineq)

        # setup problem
        self.ori_dofs = numpy.zeros(self.ori_nv)
        self.ori_qp = SQProblem(self.ori_nv, self.ori_nc)
        self.ori_qp.setOptions(self.options)  # load NMPC options

        self.ori_H = numpy.zeros((self.ori_nv, self.ori_nv))
        self.ori_A = numpy.zeros((self.ori_nc, self.ori_nv))
        self.ori_g = numpy.zeros((self.ori_nv, ))
        self.ori_lb = -numpy.ones((self.ori_nv, )) * 1e+08
        self.ori_ub = numpy.ones((self.ori_nv, )) * 1e+08
        self.ori_lbA = -numpy.ones((self.ori_nc, )) * 1e+08
        self.ori_ubA = numpy.ones((self.ori_nc, )) * 1e+08

        self._ori_qp_is_initialized = False

        # save computation time and working set recalculations
        self.ori_qp_nwsr = 0.0
        self.ori_qp_cputime = 0.0

        # FOR POSITIONS
        # define dimensions
        self.pos_nv = 2 * (self.N + self.nf)
        self.pos_nc = (self.nc_cop + self.nc_foot_position +
                       self.nc_fchange_eq)

        # setup problem
        self.pos_dofs = numpy.zeros(self.pos_nv)
        self.pos_qp = SQProblem(self.pos_nv, self.pos_nc)
        self.pos_qp.setOptions(self.options)

        self.pos_H = numpy.zeros((self.pos_nv, self.pos_nv))
        self.pos_A = numpy.zeros((self.pos_nc, self.pos_nv))
        self.pos_g = numpy.zeros((self.pos_nv, ))
        self.pos_lb = -numpy.ones((self.pos_nv, )) * 1e+08
        self.pos_ub = numpy.ones((self.pos_nv, )) * 1e+08
        self.pos_lbA = -numpy.ones((self.pos_nc, )) * 1e+08
        self.pos_ubA = numpy.ones((self.pos_nc, )) * 1e+08

        self._pos_qp_is_initialized = False

        # save computation time and working set recalculations
        self.pos_qp_nwsr = 0.0
        self.pos_qp_cputime = 0.0

        # dummy matrices
        self._ori_Q = numpy.zeros((2 * self.N, 2 * self.N))
        self._ori_p = numpy.zeros((2 * self.N, ))
        self._pos_Q = numpy.zeros((self.N + self.nf, self.N + self.nf))
        self._pos_p = numpy.zeros((self.N + self.nf, ))

        # add additional keys that should be saved
        self._data_keys.append('ori_qp_nwsr')
        self._data_keys.append('ori_qp_cputime')
        self._data_keys.append('pos_qp_nwsr')
        self._data_keys.append('pos_qp_cputime')

        # reinitialize plot data structure
        self.data = PlotData(self)

    def solve(self):
        """ Process and solve problem, s.t. pattern generator data is consistent """
        self._preprocess_solution()
        self._solve_qp()
        self._postprocess_solution()

    def _preprocess_solution(self):
        """ Update matrices and get them into the QP data structures """
        # rename for convenience
        N = self.N
        nf = self.nf

        # ORIENTATIONS

        # initialize with actual values, else take last known solution
        # NOTE for warmstart last solution is taken from qpOASES internal memory
        if not self._ori_qp_is_initialized:
            # ori_dofs = ( dddF_k_qR )
            #            ( dddF_k_qL )

            self.ori_dofs[:N] = self.dddF_k_qR
            self.ori_dofs[N:] = self.dddF_k_qL

            # TODO guess initial active set
            # this requires changes to the python interface

        # define QP matrices

        # H = ( Q_k_q )
        self._update_ori_Q()  # updates values in _Q
        self.ori_H[:, :] = self._ori_Q

        # g = ( p_k_q )
        self._update_ori_p()  # updates values in _p
        self.ori_g[:] = self._ori_p

        # ORIENTATION LINEAR CONSTRAINTS
        # velocity constraints on support foot to freeze movement
        a = 0
        b = self.nc_fvel_eq
        self.ori_A[a:b] = self.A_fvel_eq
        self.ori_lbA[a:b] = self.B_fvel_eq
        self.ori_ubA[a:b] = self.B_fvel_eq

        # box constraints for maximum orientation change
        a = self.nc_fvel_eq
        b = self.nc_fvel_eq + self.nc_fpos_ineq
        self.ori_A[a:b] = self.A_fpos_ineq
        self.ori_lbA[a:b] = self.lbB_fpos_ineq
        self.ori_ubA[a:b] = self.ubB_fpos_ineq

        # box constraints for maximum angular velocity
        a = self.nc_fvel_eq + self.nc_fpos_ineq
        b = self.nc_fvel_eq + self.nc_fpos_ineq + self.nc_fvel_ineq
        self.ori_A[a:b] = self.A_fvel_ineq
        self.ori_lbA[a:b] = self.lbB_fvel_ineq
        self.ori_ubA[a:b] = self.ubB_fvel_ineq

        # ORIENTATION BOX CONSTRAINTS
        #self.ori_lb [...] = 0.0
        #self.ori_ub [...] = 0.0

        # POSITIONS

        # initialize with actual values, else take last known solution
        # NOTE for warmstart last solution is taken from qpOASES internal memory
        if not self._pos_qp_is_initialized:
            # pos_dofs = ( dddC_kp1_x )
            #            (      F_k_x )
            #            ( dddC_kp1_y )
            #            (      F_k_y )

            self.pos_dofs[0:0 + N] = self.dddC_k_x
            self.pos_dofs[0 + N:0 + N + nf] = self.F_k_x
            a = N + nf
            self.pos_dofs[a:a + N] = self.dddC_k_y
            self.pos_dofs[a + N:a + N + nf] = self.F_k_y

            # TODO guess initial active set
            # this requires changes to the python interface

        # define QP matrices

        # H = ( Q_k   0 )
        #     (   0 Q_k )
        self._update_pos_Q()  # updates values in _Q
        self.pos_H[:N + nf, :N + nf] = self._pos_Q
        self.pos_H[-N - nf:, -N - nf:] = self._pos_Q

        # g = ( p_k_x )
        #     ( p_k_y )
        self._update_pos_p('x')  # updates values in _p
        self.pos_g[:N + nf] = self._pos_p
        self._update_pos_p('y')  # updates values in _p
        self.pos_g[-N - nf:] = self._pos_p

        # lbA <= A x <= ubA
        # (       ) <= (    Acop ) <= (    Bcop )
        # (eqBfoot) <= ( eqAfoot ) <= ( eqBfoot )
        # (       ) <= (   Afoot ) <= (   Bfoot )

        # CoP constraints
        a = 0
        b = self.nc_cop
        self.pos_A[a:b] = self.Acop
        self.pos_lbA[a:b] = self.lbBcop
        self.pos_ubA[a:b] = self.ubBcop

        #foot inequality constraints
        a = self.nc_cop
        b = self.nc_cop + self.nc_foot_position
        self.pos_A[a:b] = self.Afoot
        self.pos_lbA[a:b] = self.lbBfoot
        self.pos_ubA[a:b] = self.ubBfoot

        #foot equality constraints
        a = self.nc_cop + self.nc_foot_position
        b = self.nc_cop + self.nc_foot_position + self.nc_fchange_eq
        self.pos_A[a:b] = self.eqAfoot
        self.pos_lbA[a:b] = self.eqBfoot
        self.pos_ubA[a:b] = self.eqBfoot

        # NOTE: they stay plus minus infinity, i.e. 1e+08
        #self.pos_lb [...] = 0.0
        #self.pos_ub [...] = 0.0

    def _update_ori_Q(self):
        '''
        Update Hessian block Q according to walking report

        min a/2 || dC_kp1_q_ref - dF_k_q ||_2^2
        Q = ( QR  0 )
            (  0 QL )
        QR = ( a * Pvu^T * E_FR^T * E_FR * Pvu )
        '''
        # rename for convenience
        N = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta = self.b
        gamma = self.c
        delta = self.d

        # matrices
        E_FR = self.E_FR
        E_FL = self.E_FL

        Pvu = self.Pvu

        # assemble Hessian matrix
        # QR = ( a * Pvu^T * E_FR^T * E_FR * Pvu )
        a = 0
        b = N
        c = 0
        d = N
        QR = self._ori_Q[a:b, c:d]
        QR[...] = alpha * Pvu.transpose().dot(
            E_FR.transpose()).dot(E_FR).dot(Pvu)

        # QL = ( a * Pvu^T * E_FL^T * E_FL * Pvu )
        # Q = ( * , * )
        #     ( * ,[*])
        a = N
        b = 2 * N
        c = N
        d = 2 * N
        QL = self._ori_Q[a:b, c:d]
        QL[...] = alpha * Pvu.transpose().dot(
            E_FL.transpose()).dot(E_FL).dot(Pvu)

    def _update_ori_p(self):
        """
        Update pass gradient block p according to walking report

        min a/2 || dC_kp1_q_ref - dF_k_q ||_2^2
        p = ( pR )
            ( pL )
        pR = ( a * Pvu^T * E_FR^T * (E_FR * Pvs * f_k_qR - dC_kp1_q_ref[N/2] )
        """
        # rename for convenience
        N = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta = self.b
        gamma = self.c

        # matrices
        E_FR = self.E_FR
        E_FL = self.E_FL

        f_k_qR = self.f_k_qR
        f_k_qL = self.f_k_qL

        Pvs = self.Pvs
        Pvu = self.Pvu

        dC_kp1_q_ref = self.dC_kp1_q_ref

        # pR = ( a * Pvu^T * E_FL^T * (E_FL * Pvs * f_k_qL + dC_kp1_q_ref) )
        # p = ([*]) =
        #     ( * )
        a = 0
        b = N
        self._ori_p[a:b] = \
            alpha * Pvu.transpose().dot(E_FR.transpose()).dot(E_FR.dot(Pvs).dot(f_k_qR) - dC_kp1_q_ref)

        # p = ( * ) =
        #     ([*])
        a = N
        b = 2 * N
        self._ori_p[a:b] = \
            alpha * Pvu.transpose().dot(E_FL.transpose()).dot(E_FL.dot(Pvs).dot(f_k_qL) - dC_kp1_q_ref)

    def _update_pos_Q(self):
        '''
        Update Hessian block Q according to walking report

        Q = ( a*Pvu*Pvu + b*Ppu*E*T*E*Ppu + c*Pzu*Pzu + d*I, -c*Pzu*V_kp1  )
            (                                  -c*Pzu*V_kp1, c*V_kp1*V_kp1 )
        '''
        # rename for convenience
        N = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta = self.b
        gamma = self.c
        delta = self.d

        # cast matrices for convenience
        Ppu = numpy.asmatrix(self.Ppu)
        Pvu = numpy.asmatrix(self.Pvu)
        Pzu = numpy.asmatrix(self.Pzu)
        V_kp1 = numpy.asmatrix(self.V_kp1)

        # Q = ([*], * ) = a*Pvu*Pvu + b*Ppu*E*E*Ppu + c*Pzu*Pzu + d*I
        #     ( * , * )
        a = 0
        b = N
        c = 0
        d = N
        self._pos_Q[a:b,c:d] = alpha * Pvu.transpose() * Pvu \
                         + gamma * Pzu.transpose() * Pzu \
                         + delta * numpy.eye(N)

        # Q = ( * ,[*])
        #     ( * , * )
        a = 0
        b = N
        c = N
        d = N + nf
        self._pos_Q[a:b, c:d] = -gamma * Pzu.transpose() * V_kp1

        # Q = (  * , * ) = ( * , [*] )^T
        #     ( [*], * )   ( * ,  *  )
        dummy = self._pos_Q[a:b, c:d]
        a = N
        b = N + nf
        c = 0
        d = N
        self._pos_Q[a:b, c:d] = dummy.transpose()

        # Q = ( * , * )
        #     ( * ,[*])
        a = N
        b = N + nf
        c = N
        d = N + nf
        self._pos_Q[a:b, c:d] = gamma * V_kp1.transpose() * V_kp1

    def _update_pos_p(self, case=None):
        """
        Update pass gradient block p according to walking report

        p = ( a*Pvu*(Pvs*ck - Refk+1) + b*Ppu*E*(E*Pps*cx - Refk+1) + c*Pzu*(Pzs*ck - vk+1*fk )
            (                                                       -c*Vk+1*(Pzs*ck - vk+1*fk )
        """
        if case == 'x':
            f_k = self.f_k_x

            c_k = utility.cast_array_as_matrix(self.c_k_x)
            dC_kp1_ref = utility.cast_array_as_matrix(self.dC_kp1_x_ref)

        elif case == 'y':
            f_k = self.f_k_y

            c_k = utility.cast_array_as_matrix(self.c_k_y)
            dC_kp1_ref = utility.cast_array_as_matrix(self.dC_kp1_y_ref)
        else:
            err_str = 'Please use either case "x" or "y" for this routine'
            raise AttributeError(err_str)

        # rename for convenience
        N = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta = self.b
        gamma = self.c

        # matrices
        v_kp1 = utility.cast_array_as_matrix(self.v_kp1)

        Pvs = numpy.asmatrix(self.Pvs)
        Pvu = numpy.asmatrix(self.Pvu)
        Pps = numpy.asmatrix(self.Pps)
        Ppu = numpy.asmatrix(self.Ppu)
        Pzs = numpy.asmatrix(self.Pzs)
        Pzu = numpy.asmatrix(self.Pzu)
        V_kp1 = numpy.asmatrix(self.V_kp1)

        # p = ([*]) =
        #     ( * )
        a = 0
        b = N
        self._pos_p[a:b] = (
            alpha * Pvu.transpose() * (Pvs * c_k - dC_kp1_ref) +
            gamma * Pzu.transpose() * (Pzs * c_k - v_kp1 * f_k)
            #+ b*Ppu.transpose() * E.transpose() * E * Ppu \
        ).ravel()

        # p = ( * ) =
        #     ([*])
        a = N
        b = N + nf
        self._pos_p[a:b] = (-gamma * V_kp1.transpose() *
                            (Pzs * c_k - v_kp1 * f_k)).ravel()
Esempio n. 7
0
class NMPCGenerator(BaseGenerator):
    """
    Implementation of the combined problems using NMPC techniques.

    Solve QP for position and orientation of CoM and feet simultaneously in
    each timestep. Calculates derivatives and updates states in each step.
    """
    def __init__(self, N=16, T=0.1, T_step=0.8, fsm_state='D', fsm_sl=1):
        """
        Initialize pattern generator matrices through base class
        and allocate two QPs one for optimzation of orientation and
        one for position of CoM and feet.

        """
        super(NMPCGenerator, self).__init__(N, T, T_step, fsm_state, fsm_sl)
        # The pattern generator has to solve the following kind of
        # problem in each iteration

        # min_x 1/2 * x.T * H(w0) * x + x.T g(w0)
        # s.t.   lbA(w0) <= A(w0) * x <= ubA(w0)
        #         lb(w0) <=         x <= ub(wo)

        # Because of varying H and A, we have to use the
        # SQPProblem class, which supports this kind of QPs

        # rename for convenience
        N = self.N
        nf = self.nf

        # define some qpOASES specific things
        self.cpu_time = 0.1  # upper bound on CPU time, 0 is no upper limit
        self.nwsr = 100  # # of working set recalculations
        self.options = Options()
        self.options.setToMPC()
        #self.options.printLevel = PrintLevel.LOW

        # define variable dimensions
        # variables of:     position + orientation
        self.nv = 2 * (self.N + self.nf) + 2 * N

        # define constraint dimensions
        self.nc_pos = (self.nc_cop + self.nc_foot_position +
                       self.nc_fchange_eq)
        self.nc_ori = (self.nc_fvel_eq + self.nc_fpos_ineq + self.nc_fvel_ineq)
        self.nc = (
            # position
            self.nc_pos
            # orientation
            + self.nc_ori)

        # setup problem
        self.dofs = numpy.zeros(self.nv)
        self.qp = SQProblem(self.nv, self.nc)

        # load NMPC options
        self.qp.setOptions(self.options)

        self.qp_H = numpy.eye(self.nv, self.nv)
        self.qp_A = numpy.zeros((self.nc, self.nv))
        self.qp_g = numpy.zeros((self.nv, ))
        self.qp_lb = -numpy.ones((self.nv, )) * 1e+08
        self.qp_ub = numpy.ones((self.nv, )) * 1e+08
        self.qp_lbA = -numpy.ones((self.nc, )) * 1e+08
        self.qp_ubA = numpy.ones((self.nc, )) * 1e+08

        self._qp_is_initialized = False

        # save computation time and working set recalculations
        self.qp_nwsr = 0.0
        self.qp_cputime = 0.0

        # setup analyzer for solution analysis
        analyser = SolutionAnalysis()

        # helper matrices for common expressions
        self.Hx = numpy.zeros((1, 2 * (N + nf)), dtype=float)
        self.Q_k_x = numpy.zeros((N + nf, N + nf), dtype=float)
        self.p_k_x = numpy.zeros((N + nf, ), dtype=float)
        self.p_k_y = numpy.zeros((N + nf, ), dtype=float)

        self.Hq = numpy.zeros((1, 2 * N), dtype=float)
        self.Q_k_qR = numpy.zeros((N, N), dtype=float)
        self.Q_k_qL = numpy.zeros((N, N), dtype=float)
        self.p_k_qR = numpy.zeros((N), dtype=float)
        self.p_k_qL = numpy.zeros((N), dtype=float)

        self.A_pos_x = numpy.zeros((self.nc_pos, 2 * (N + nf)), dtype=float)
        self.A_pos_q = numpy.zeros((self.nc_pos, 2 * N), dtype=float)
        self.ubA_pos = numpy.zeros((self.nc_pos, ), dtype=float)
        self.lbA_pos = numpy.zeros((self.nc_pos, ), dtype=float)

        self.A_ori = numpy.zeros((self.nc_ori, 2 * N), dtype=float)
        self.ubA_ori = numpy.zeros((self.nc_ori, ), dtype=float)
        self.lbA_ori = numpy.zeros((self.nc_ori, ), dtype=float)

        self.derv_Acop_map = numpy.zeros((self.nc_cop, self.N), dtype=float)
        self.derv_Afoot_map = numpy.zeros((self.nc_foot_position, self.N),
                                          dtype=float)

        self._update_foot_selection_matrix()

        # add additional keys that should be saved
        self._data_keys.append('qp_nwsr')
        self._data_keys.append('qp_cputime')

        # reinitialize plot data structure
        self.data = PlotData(self)

    def solve(self):
        """ Process and solve problem, s.t. pattern generator data is consistent """
        self._preprocess_solution()
        self._solve_qp()
        self._postprocess_solution()

    def _preprocess_solution(self):
        """ Update matrices and get them into the QP data structures """
        # rename for convenience
        N = self.N
        nf = self.nf

        # dofs
        dofs = self.dofs

        dddC_k_x = self.dddC_k_x
        F_k_x = self.F_k_x
        dddC_k_y = self.dddC_k_y
        F_k_y = self.F_k_y
        dddF_k_qR = self.dddF_k_qR
        dddF_k_qL = self.dddF_k_qL

        # inject dofs for convenience
        # dofs = ( dddC_k_x ) N
        #        (    F_k_x ) nf
        #        ( dddC_k_y ) N
        #        (    F_k_y ) nf
        #        ( dddF_k_q ) N
        #        ( dddF_k_q ) N
        dofs[0:0 + N] = dddC_k_x
        dofs[0 + N:0 + N + nf] = F_k_x

        a = N + nf
        dofs[a:a + N] = dddC_k_y
        dofs[a + N:a + N + nf] = F_k_y

        a = 2 * (N + nf)
        dofs[a:a + N] = dddF_k_qR
        dofs[-N:] = dddF_k_qL

        # define position and orientation dofs
        # U_k = ( U_k_xy, U_k_q).T
        # U_k_xy = ( dddC_k_x ) N
        #          (    F_k_x ) nf
        #          ( dddC_k_y ) N
        #          (    F_k_y ) nf
        # U_k_q  = ( dddF_k_q ) N
        #          ( dddF_k_q ) N

        # position dofs
        U_k = self.dofs
        U_k_xy = U_k[:2 * (N + nf)]
        U_k_x = U_k_xy[:(N + nf)]
        U_k_y = U_k_xy[(N + nf):]

        # orientation dofs
        U_k_q = U_k[-2 * N:]
        U_k_qR = U_k_q[:N]
        U_k_qL = U_k_q[N:]

        # position dimensions
        nU_k = U_k.shape[0]
        nU_k_xy = U_k_xy.shape[0]
        nU_k_x = U_k_x.shape[0]
        nU_k_y = U_k_y.shape[0]

        # orientation dimensions
        nU_k_q = U_k_q.shape[0]
        nU_k_qR = U_k_qR.shape[0]
        nU_k_qL = U_k_qL.shape[0]

        # initialize with actual values, else take last known solution
        # NOTE for warmstart last solution is taken from qpOASES internal memory
        if not self._qp_is_initialized:
            # TODO guess initial active set
            # this requires changes to the python interface
            pass

        # calculate some common sub expressions
        self._calculate_common_expressions()

        # calculate Jacobian parts that are non-trivial, i.e. wrt. to orientation
        self._calculate_derivatives()

        # POSITION QP
        # rename matrices
        Q_k_x = self.Q_k_x
        Q_k_y = self.Q_k_x  # NOTE it's exactly the same!
        p_k_x = self.p_k_x
        p_k_y = self.p_k_y

        # ORIENTATION QP
        # rename matrices
        Q_k_qR = self.Q_k_qR
        Q_k_qL = self.Q_k_qL
        p_k_qR = self.p_k_qR
        p_k_qL = self.p_k_qL

        # define QP matrices
        # Gauss-Newton Hessian approximation
        # define sub blocks
        # H = (Hxy | Hqx)
        #     (Hxq | Hqq)
        Hxx = self.qp_H[:nU_k_xy, :nU_k_xy]
        Hxq = self.qp_H[:nU_k_xy, nU_k_xy:]
        Hqx = self.qp_H[nU_k_xy:, :nU_k_xy]
        Hqq = self.qp_H[nU_k_xy:, nU_k_xy:]

        # fill matrices
        Hxx[:nU_k_x, :nU_k_x] = Q_k_x
        Hxx[-nU_k_y:, -nU_k_y:] = Q_k_y

        Hqq[:nU_k_qR, :nU_k_qR] = Q_k_qR
        Hqq[-nU_k_qL:, -nU_k_qL:] = Q_k_qL
        #self.qp_H[...] = numpy.eye(self.nv)

        # Gradient of Objective
        # define sub blocks
        # g = (gx)
        #     (gq)
        gx = self.qp_g[:nU_k_xy]
        gq = self.qp_g[-nU_k_q:]

        # gx = ( U_k_x.T Q_k_x + p_k_x )
        gx[:nU_k_x] = U_k_x.dot(Q_k_x) + p_k_x
        gx[-nU_k_y:] = U_k_y.dot(Q_k_y) + p_k_y

        # gq = ( U_k_q.T Q_k_q + p_k_q )
        gq[:nU_k_qR] = U_k_qR.dot(Q_k_qR) + p_k_qR
        gq[-nU_k_qL:] = U_k_qL.dot(Q_k_qL) + p_k_qL

        # CONSTRAINTS
        # A = ( A_xy, A_xyq )
        #     (    0, A_q   )
        A_xy = self.qp_A[:self.nc_pos, :nU_k_xy]
        A_xyq = self.qp_A[:self.nc_pos, -nU_k_q:]
        lbA_xy = self.qp_lbA[:self.nc_pos]
        ubA_xy = self.qp_ubA[:self.nc_pos]

        A_q = self.qp_A[-self.nc_ori:, -nU_k_q:]
        lbA_q = self.qp_lbA[-self.nc_ori:]
        ubA_q = self.qp_ubA[-self.nc_ori:]

        # linearized constraints are given by
        # lbA - A * U_k <= nablaA * Delta_U_k <= ubA - A * U_k
        A_xy[...] = self.A_pos_x
        A_xyq[...] = self.A_pos_q
        lbA_xy[...] = self.lbA_pos - self.A_pos_x.dot(U_k_xy)
        ubA_xy[...] = self.ubA_pos - self.A_pos_x.dot(U_k_xy)

        A_q[...] = self.A_ori
        lbA_q[...] = self.lbA_ori - self.A_ori.dot(U_k_q)
        ubA_q[...] = self.ubA_ori - self.A_ori.dot(U_k_q)

    def _calculate_common_expressions(self):
        """
        encapsulation of complicated matrix assembly of former orientation and
        position QP sub matrices
        """
        #rename for convenience
        N = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta = self.b
        gamma = self.c
        delta = self.d

        # matrices
        E_FR = self.E_FR
        E_FL = self.E_FL

        Pvs = self.Pvs
        Pvu = self.Pvu
        Pzs = self.Pzs
        Pzu = self.Pzu

        c_k_x = self.c_k_x
        c_k_y = self.c_k_y
        f_k_x = self.f_k_x
        f_k_y = self.f_k_y
        f_k_qR = self.f_k_qR
        f_k_qL = self.f_k_qL

        v_kp1 = self.v_kp1
        V_kp1 = self.V_kp1

        dC_kp1_x_ref = self.dC_kp1_x_ref
        dC_kp1_y_ref = self.dC_kp1_y_ref
        dC_kp1_q_ref = self.dC_kp1_q_ref

        # POSITION QP MATRICES
        # Q_k_x = ( Q_k_xXX Q_k_xXF ) = Q_k_y
        #         ( Q_k_xFX Q_k_xFF )
        Q_k_x = self.Q_k_x

        a = 0
        b = N
        c = 0
        d = N
        Q_k_xXX = Q_k_x[a:b, c:d]

        a = 0
        b = N
        c = N
        d = N + nf
        Q_k_xXF = Q_k_x[a:b, c:d]

        a = N
        b = N + nf
        c = 0
        d = N
        Q_k_xFX = Q_k_x[a:b, c:d]

        a = N
        b = N + nf
        c = N
        d = N + nf
        Q_k_xFF = Q_k_x[a:b, c:d]

        # Q_k_xXX = (  0.5 * a * Pvu^T * Pvu + c * Pzu^T * Pzu + d * I )
        # Q_k_xXF = ( -0.5 * c * Pzu^T * V_kp1 )
        # Q_k_xFX = ( -0.5 * c * Pzu^T * V_kp1 )^T
        # Q_k_xFF = (  0.5 * c * V_kp1^T * V_kp1 )
        Q_k_xXX[...] = (alpha * Pvu.transpose().dot(Pvu) +
                        gamma * Pzu.transpose().dot(Pzu) +
                        delta * numpy.eye(N))
        Q_k_xXF[...] = -gamma * Pzu.transpose().dot(V_kp1)
        Q_k_xFX[...] = Q_k_xXF.transpose()
        Q_k_xFF[...] = gamma * V_kp1.transpose().dot(V_kp1)

        # p_k_x = ( p_k_xX )
        #         ( p_k_xF )
        p_k_x = self.p_k_x
        p_k_xX = p_k_x[:N]
        p_k_xF = p_k_x[-nf:]

        # p_k_xX = (  0.5 * a * Pvu^T * Pvu + c * Pzu^T * Pzu + d * I )
        # p_k_xF = ( -0.5 * c * Pzu^T * V_kp1 )
        p_k_xX[...] = alpha * Pvu.transpose().dot(  Pvs.dot(c_k_x) - dC_kp1_x_ref) \
                    + gamma * Pzu.transpose().dot(  Pzs.dot(c_k_x) - v_kp1.dot(f_k_x))
        p_k_xF[...] = -gamma * V_kp1.transpose().dot(
            Pzs.dot(c_k_x) - v_kp1.dot(f_k_x))

        # p_k_y = ( p_k_yX )
        #         ( p_k_yF )
        p_k_y = self.p_k_y
        p_k_yX = p_k_y[:N]
        p_k_yF = p_k_y[-nf:]

        # p_k_yX = (  0.5 * a * Pvu^T * Pvu + c * Pzu^T * Pzu + d * I )
        # p_k_yF = ( -0.5 * c * Pzu^T * V_kp1 )
        p_k_yX[...] = alpha * Pvu.transpose().dot(  Pvs.dot(c_k_y) - dC_kp1_y_ref) \
                    + gamma * Pzu.transpose().dot(  Pzs.dot(c_k_y) - v_kp1.dot(f_k_y))
        p_k_yF[...] = -gamma * V_kp1.transpose().dot(
            Pzs.dot(c_k_y) - v_kp1.dot(f_k_y))

        # ORIENTATION QP MATRICES
        # Q_k_qR = ( 0.5 * a * Pvu^T * E_FR^T *  E_FR * Pvu )
        Q_k_qR = self.Q_k_qR
        Q_k_qR[...] = alpha * Pvu.transpose().dot(
            E_FR.transpose()).dot(E_FR).dot(Pvu)

        # p_k_qR = (       a * Pvu^T * E_FR^T * (E_FR * Pvs * f_k_qR + dC_kp1_q_ref) )
        p_k_qR = self.p_k_qR
        p_k_qR[...] = alpha * Pvu.transpose().dot(
            E_FR.transpose()).dot(E_FR.dot(Pvs).dot(f_k_qR) - dC_kp1_q_ref)

        # Q_k_qL = ( 0.5 * a * Pvu^T * E_FL^T *  E_FL * Pvu )
        Q_k_qL = self.Q_k_qL
        Q_k_qL[...] = alpha * Pvu.transpose().dot(
            E_FL.transpose()).dot(E_FL).dot(Pvu)
        # p_k_qL = (       a * Pvu^T * E_FL^T * (E_FL * Pvs * f_k_qL + dC_kp1_q_ref) )
        p_k_qL = self.p_k_qL
        p_k_qL[...] = alpha * Pvu.transpose().dot(
            E_FL.transpose()).dot(E_FL.dot(Pvs).dot(f_k_qL) - dC_kp1_q_ref)

        # LINEAR CONSTRAINTS
        # CoP constraints
        a = 0
        b = self.nc_cop
        self.A_pos_x[a:b] = self.Acop
        self.lbA_pos[a:b] = self.lbBcop
        self.ubA_pos[a:b] = self.ubBcop

        #foot inequality constraints
        a = self.nc_cop
        b = self.nc_cop + self.nc_foot_position
        self.A_pos_x[a:b] = self.Afoot
        self.lbA_pos[a:b] = self.lbBfoot
        self.ubA_pos[a:b] = self.ubBfoot

        #foot equality constraints
        a = self.nc_cop + self.nc_foot_position
        b = self.nc_cop + self.nc_foot_position + self.nc_fchange_eq
        self.A_pos_x[a:b] = self.eqAfoot
        self.lbA_pos[a:b] = self.eqBfoot
        self.ubA_pos[a:b] = self.eqBfoot

        # velocity constraints on support foot to freeze movement
        a = 0
        b = self.nc_fvel_eq
        self.A_ori[a:b] = self.A_fvel_eq
        self.lbA_ori[a:b] = self.B_fvel_eq
        self.ubA_ori[a:b] = self.B_fvel_eq

        # box constraints for maximum orientation change
        a = self.nc_fvel_eq
        b = self.nc_fvel_eq + self.nc_fpos_ineq
        self.A_ori[a:b] = self.A_fpos_ineq
        self.lbA_ori[a:b] = self.lbB_fpos_ineq
        self.ubA_ori[a:b] = self.ubB_fpos_ineq

        # box constraints for maximum angular velocity
        a = self.nc_fvel_eq + self.nc_fpos_ineq
        b = self.nc_fvel_eq + self.nc_fpos_ineq + self.nc_fvel_ineq
        self.A_ori[a:b] = self.A_fvel_ineq
        self.lbA_ori[a:b] = self.lbB_fvel_ineq
        self.ubA_ori[a:b] = self.ubB_fvel_ineq

    def _calculate_derivatives(self):
        """ calculate the Jacobian of the constraints function """

        # COP CONSTRAINTS
        # build the constraint enforcing the center of pressure to stay inside
        # the support polygon given through the convex hull of the foot.

        # define dummy values
        # D_kp1 = (D_kp1x, Dkp1_y)
        D_kp1 = numpy.zeros((self.nFootEdge * self.N, 2 * self.N), dtype=float)
        D_kp1x = D_kp1[:, :self.N]  # view on big matrix
        D_kp1y = D_kp1[:, -self.N:]  # view on big matrix
        b_kp1 = numpy.zeros((self.nFootEdge * self.N, ), dtype=float)

        # change entries according to support order changes in D_kp1
        theta_vec = [self.f_k_q, self.F_k_q[0], self.F_k_q[1]]
        for i in range(self.N):
            theta = theta_vec[self.supportDeque[i].stepNumber]

            # NOTE THIS CHANGES DUE TO APPLYING THE DERIVATIVE!
            rotMat = numpy.array([
                # old
                # [ cos(theta), sin(theta)],
                # [-sin(theta), cos(theta)]
                # new: derivative wrt to theta
                [-numpy.sin(theta), numpy.cos(theta)],
                [-numpy.cos(theta), -numpy.sin(theta)]
            ])

            if self.supportDeque[i].foot == "left":
                A0 = self.A0lf.dot(rotMat)
                B0 = self.ubB0lf
                D0 = self.A0dlf.dot(rotMat)
                d0 = self.ubB0dlf
            else:
                A0 = self.A0rf.dot(rotMat)
                B0 = self.ubB0rf
                D0 = self.A0drf.dot(rotMat)
                d0 = self.ubB0drf

            # get support foot and check if it is double support
            for j in range(self.nf):
                if self.V_kp1[i, j] == 1:
                    if self.fsm_states[j] == 'D':
                        A0 = D0
                        B0 = d0
                else:
                    pass

            for k in range(self.nFootEdge):
                # get d_i+1^x(f^theta)
                D_kp1x[i * self.nFootEdge + k, i] = A0[k][0]
                # get d_i+1^y(f^theta)
                D_kp1y[i * self.nFootEdge + k, i] = A0[k][1]
                # get right hand side of equation
                b_kp1[i * self.nFootEdge + k] = B0[k]

        #rename for convenience
        N = self.N
        nf = self.nf
        PzuV = self.PzuV
        PzuVx = self.PzuVx
        PzuVy = self.PzuVy
        PzsC = self.PzsC
        PzsCx = self.PzsCx
        PzsCy = self.PzsCy
        v_kp1fc = self.v_kp1fc
        v_kp1fc_x = self.v_kp1fc_x
        v_kp1fc_y = self.v_kp1fc_y

        # build constraint transformation matrices
        # PzuV = ( PzuVx )
        #        ( PzuVy )

        # PzuVx = ( Pzu | -V_kp1 |   0 |      0 )
        PzuVx[:, :self.
              N] = self.Pzu  # TODO this is constant in matrix and should go into the build up matrice part
        PzuVx[:, self.N:self.N + self.nf] = -self.V_kp1

        # PzuVy = (   0 |      0 | Pzu | -V_kp1 )
        PzuVy[:, -self.N - self.nf:-self.
              nf] = self.Pzu  # TODO this is constant in matrix and should go into the build up matrice part
        PzuVy[:, -self.nf:] = -self.V_kp1

        # PzuV = ( PzsCx ) = ( Pzs * c_k_x)
        #        ( PzsCy )   ( Pzs * c_k_y)
        PzsCx[...] = self.Pzs.dot(self.c_k_x)  #+ self.v_kp1.dot(self.f_k_x)
        PzsCy[...] = self.Pzs.dot(self.c_k_y)  #+ self.v_kp1.dot(self.f_k_y)

        # v_kp1fc = ( v_kp1fc_x ) = ( v_kp1 * f_k_x)
        #           ( v_kp1fc_y )   ( v_kp1 * f_k_y)
        v_kp1fc_x[...] = self.v_kp1.dot(self.f_k_x)
        v_kp1fc_y[...] = self.v_kp1.dot(self.f_k_y)

        # build CoP linear constraints
        # NOTE D_kp1 is member and D_kp1 = ( D_kp1x | D_kp1y )
        #      D_kp1x,y contains entries from support polygon
        dummy = D_kp1.dot(PzuV)
        dummy = dummy.dot(self.dofs[:2 * (N + nf)])

        # CoP constraints
        a = 0
        b = self.nc_cop
        self.A_pos_q[a:b, :N] = \
           dummy.dot(self.derv_Acop_map).dot(self.E_FR_bar).dot(self.Ppu)

        self.A_pos_q[a:b,-N:] = \
            dummy.dot(self.derv_Acop_map).dot(self.E_FL_bar).dot(self.Ppu)

        # FOOT POSITION CONSTRAINTS
        # defined on the horizon
        # inequality constraint on both feet A u + B <= 0
        # A0 R(theta) [Fx_k+1 - Fx_k] <= ubB0
        #             [Fy_k+1 - Fy_k]

        matSelec = numpy.array([[1, 0], [-1, 1]])
        footSelec = numpy.array([[self.f_k_x, 0], [self.f_k_y, 0]])
        theta_vec = [self.f_k_q, self.F_k_q[0]]

        # rotation matrice from F_k+1 to F_k
        # NOTE THIS CHANGES DUE TO APPLYING THE DERIVATIVE!
        rotMat1 = numpy.array([
            # old
            # [cos(theta_vec[0]), sin(theta_vec[0])],
            # [-sin(theta_vec[0]), cos(theta_vec[0])]
            # new: derivative wrt to theta
            [-numpy.sin(theta_vec[0]),
             numpy.cos(theta_vec[0])],
            [-numpy.cos(theta_vec[0]), -numpy.sin(theta_vec[0])]
        ])
        rotMat2 = numpy.array([
            # old
            # [cos(theta_vec[1]), sin(theta_vec[1])],
            # [-sin(theta_vec[1]), cos(theta_vec[1])]
            # new
            [-numpy.sin(theta_vec[1]),
             numpy.cos(theta_vec[1])],
            [-numpy.cos(theta_vec[1]), -numpy.sin(theta_vec[1])]
        ])
        nf = self.nf
        nEdges = self.A0l.shape[0]
        N = self.N
        ncfoot = nf * nEdges

        if self.currentSupport.foot == "left":
            A_f1 = self.A0r.dot(rotMat1)
            A_f2 = self.A0l.dot(rotMat2)
        else:
            A_f1 = self.A0l.dot(rotMat1)
            A_f2 = self.A0r.dot(rotMat2)

        tmp1 = numpy.array([A_f1[:, 0], numpy.zeros((nEdges, ), dtype=float)])
        tmp2 = numpy.array([numpy.zeros((nEdges, ), dtype=float), A_f2[:, 0]])
        tmp3 = numpy.array([A_f1[:, 1], numpy.zeros((nEdges, ), dtype=float)])
        tmp4 = numpy.array([numpy.zeros(nEdges, ), A_f2[:, 1]])

        X_mat = numpy.concatenate((tmp1.T, tmp2.T), 0)
        A0x = X_mat.dot(matSelec)
        Y_mat = numpy.concatenate((tmp3.T, tmp4.T), 0)
        A0y = Y_mat.dot(matSelec)

        dummy = numpy.concatenate((numpy.zeros(
            (ncfoot, N),
            dtype=float), A0x, numpy.zeros((ncfoot, N), dtype=float), A0y), 1)
        dummy = dummy.dot(self.dofs[:2 * (N + nf)])

        #foot inequality constraints
        a = self.nc_cop
        b = self.nc_cop + self.nc_foot_position
        self.A_pos_q[a:b, :N] = dummy.dot(self.derv_Afoot_map).dot(
            self.E_FR_bar).dot(self.Ppu)
        self.A_pos_q[a:b, -N:] = dummy.dot(self.derv_Afoot_map).dot(
            self.E_FL_bar).dot(self.Ppu)

    def _solve_qp(self):
        """
        Solve QP first run with init functionality and other runs with warmstart
        """
        self.cpu_time = 2.9  # ms
        self.nwsr = 1000  # unlimited bounded
        if not self._qp_is_initialized:
            ret, nwsr, cputime = self.qp.init(self.qp_H, self.qp_g, self.qp_A,
                                              self.qp_lb, self.qp_ub,
                                              self.qp_lbA, self.qp_ubA,
                                              self.nwsr, self.cpu_time)
            self._qp_is_initialized = True
        else:
            ret, nwsr, cputime = self.qp.hotstart(self.qp_H, self.qp_g,
                                                  self.qp_A, self.qp_lb,
                                                  self.qp_ub, self.qp_lbA,
                                                  self.qp_ubA, self.nwsr,
                                                  self.cpu_time)

        # orientation primal solution
        self.qp.getPrimalSolution(self.dofs)

        # save qp solver data
        self.qp_nwsr = nwsr  # working set recalculations
        self.qp_cputime = cputime * 1000.  # in milliseconds (set to 2.9ms)

    def _postprocess_solution(self):
        """ Get solution and put it back into generator data structures """
        # rename for convenience
        N = self.N
        nf = self.nf

        # extract dofs
        # dofs = ( dddC_k_x ) N
        #        (    F_k_x ) nf
        #        ( dddC_k_y ) N
        #        (    F_k_y ) nf
        #        ( dddF_k_q ) N
        #        ( dddF_k_q ) N

        # NOTE this time we add an increment to the existing values
        # data(k+1) = data(k) + alpha * dofs

        # TODO add line search when problematic
        alpha = 1.0

        # x values
        self.dddC_k_x[:] += alpha * self.dofs[0:0 + N]
        self.F_k_x[:] += alpha * self.dofs[0 + N:0 + N + nf]

        # y values
        a = N + nf
        self.dddC_k_y[:] += alpha * self.dofs[a:a + N]
        self.F_k_y[:] += alpha * self.dofs[a + N:a + N + nf]

        # feet orientation
        a = 2 * (N + nf)
        self.dddF_k_qR[:] += alpha * self.dofs[a:a + N]
        self.dddF_k_qL[:] += alpha * self.dofs[-N:]

    def update(self):
        """
        overload update function to define time dependent support foot selection
        matrix.
        """
        ret = super(NMPCGenerator, self).update()

        # update selection matrix when something has changed
        self._update_foot_selection_matrix()

        return ret

    def _update_foot_selection_matrix(self):
        """ get right foot selection matrix """
        i = 0
        for j in range(self.N):
            self.derv_Acop_map[i:i + self.nFootEdge, j] = 1.0
            i += self.nFootEdge

        self.derv_Afoot_map[...] = 0.0

        i = self.nFootPosHullEdges
        for j in range(self.nf - 1):
            for k in range(self.N):
                if self.V_kp1[k, j] == 1:
                    self.derv_Afoot_map[i:i + self.nFootPosHullEdges, k] = 1.0
                    i += self.nFootPosHullEdges
                    break
            else:
                self.derv_Afoot_map[i:i + self.nFootPosHullEdges, j] = 0.0
Esempio n. 8
0
class NMPCGenerator(BaseGenerator):
    """
    Implementation of the combined problems using NMPC techniques.

    Solve QP for position and orientation of CoM and feet simultaneously in
    each timestep. Calculates derivatives and updates states in each step.
    """
    def __init__(
        self, N=16, T=0.1, T_step=0.8,
        fsm_state='D', fsm_sl=1
    ):
        """
        Initialize pattern generator matrices through base class
        and allocate two QPs one for optimzation of orientation and
        one for position of CoM and feet.

        """
        super(NMPCGenerator, self).__init__(
            N, T, T_step, fsm_state, fsm_sl
        )
        # The pattern generator has to solve the following kind of
        # problem in each iteration

        # min_x 1/2 * x.T * H(w0) * x + x.T g(w0)
        # s.t.   lbA(w0) <= A(w0) * x <= ubA(w0)
        #         lb(w0) <=         x <= ub(wo)

        # Because of varying H and A, we have to use the
        # SQPProblem class, which supports this kind of QPs

        # rename for convenience
        N  = self.N
        nf = self.nf

        # define some qpOASES specific things
        self.cpu_time = 0.1 # upper bound on CPU time, 0 is no upper limit
        self.nwsr     = 100 # # of working set recalculations
        self.options = Options()
        self.options.setToMPC()
        #self.options.printLevel = PrintLevel.LOW

        # define variable dimensions
        # variables of:     position + orientation
        self.nv = 2*(self.N+self.nf) + 2*N

        # define constraint dimensions
        self.nc_pos = (
              self.nc_cop
            + self.nc_foot_position
            + self.nc_fchange_eq
        )
        self.nc_ori = (
              self.nc_fvel_eq
            + self.nc_fpos_ineq
            + self.nc_fvel_ineq
        )
        self.nc = (
            # position
              self.nc_pos
            # orientation
            + self.nc_ori
        )

        # setup problem
        self.dofs = numpy.zeros(self.nv)
        self.qp   = SQProblem(self.nv, self.nc)

        # load NMPC options
        self.qp.setOptions(self.options)

        self.qp_H   =  numpy.eye(self.nv,self.nv)
        self.qp_A   =  numpy.zeros((self.nc,self.nv))
        self.qp_g   =  numpy.zeros((self.nv,))
        self.qp_lb  = -numpy.ones((self.nv,))*1e+08
        self.qp_ub  =  numpy.ones((self.nv,))*1e+08
        self.qp_lbA = -numpy.ones((self.nc,))*1e+08
        self.qp_ubA =  numpy.ones((self.nc,))*1e+08

        self._qp_is_initialized = False

        # save computation time and working set recalculations
        self.qp_nwsr    = 0.0
        self.qp_cputime = 0.0

        # setup analyzer for solution analysis
        analyser = SolutionAnalysis()

        # helper matrices for common expressions
        self.Hx     = numpy.zeros((1, 2*(N+nf)), dtype=float)
        self.Q_k_x  = numpy.zeros((N+nf, N+nf),  dtype=float)
        self.p_k_x  = numpy.zeros((N+nf,),       dtype=float)
        self.p_k_y  = numpy.zeros((N+nf,),       dtype=float)

        self.Hq     = numpy.zeros((1, 2*N), dtype=float)
        self.Q_k_qR = numpy.zeros((N, N),   dtype=float)
        self.Q_k_qL = numpy.zeros((N, N),   dtype=float)
        self.p_k_qR = numpy.zeros((N),      dtype=float)
        self.p_k_qL = numpy.zeros((N),      dtype=float)

        self.A_pos_x   = numpy.zeros((self.nc_pos, 2*(N+nf)), dtype=float)
        self.A_pos_q   = numpy.zeros((self.nc_pos, 2*N), dtype=float)
        self.ubA_pos = numpy.zeros((self.nc_pos,), dtype=float)
        self.lbA_pos = numpy.zeros((self.nc_pos,), dtype=float)

        self.A_ori   = numpy.zeros((self.nc_ori, 2*N), dtype=float)
        self.ubA_ori = numpy.zeros((self.nc_ori,),     dtype=float)
        self.lbA_ori = numpy.zeros((self.nc_ori,),     dtype=float)

        self.derv_Acop_map = numpy.zeros((self.nc_cop, self.N), dtype=float)
        self.derv_Afoot_map = numpy.zeros((self.nc_foot_position, self.N), dtype=float)

        self._update_foot_selection_matrix()

        # add additional keys that should be saved
        self._data_keys.append('qp_nwsr')
        self._data_keys.append('qp_cputime')

        # reinitialize plot data structure
        self.data = PlotData(self)

    def solve(self):
        """ Process and solve problem, s.t. pattern generator data is consistent """
        self._preprocess_solution()
        self._solve_qp()
        self._postprocess_solution()

    def _preprocess_solution(self):
        """ Update matrices and get them into the QP data structures """
        # rename for convenience
        N  = self.N
        nf = self.nf

        # dofs
        dofs = self.dofs

        dddC_k_x  = self.dddC_k_x
        F_k_x     = self.F_k_x
        dddC_k_y  = self.dddC_k_y
        F_k_y     = self.F_k_y
        dddF_k_qR = self.dddF_k_qR
        dddF_k_qL = self.dddF_k_qL

        # inject dofs for convenience
        # dofs = ( dddC_k_x ) N
        #        (    F_k_x ) nf
        #        ( dddC_k_y ) N
        #        (    F_k_y ) nf
        #        ( dddF_k_q ) N
        #        ( dddF_k_q ) N
        dofs[0  :0+N   ] = dddC_k_x
        dofs[0+N:0+N+nf] = F_k_x

        a = N+nf
        dofs[a  :a+N   ] = dddC_k_y
        dofs[a+N:a+N+nf] = F_k_y

        a = 2*(N+nf)
        dofs[  a:a+N]    = dddF_k_qR
        dofs[ -N:]       = dddF_k_qL

        # define position and orientation dofs
        # U_k = ( U_k_xy, U_k_q).T
        # U_k_xy = ( dddC_k_x ) N
        #          (    F_k_x ) nf
        #          ( dddC_k_y ) N
        #          (    F_k_y ) nf
        # U_k_q  = ( dddF_k_q ) N
        #          ( dddF_k_q ) N

        # position dofs
        U_k    = self.dofs
        U_k_xy = U_k[    :2*(N+nf)]
        U_k_x  = U_k_xy[:(N+nf)]
        U_k_y  = U_k_xy[(N+nf):]

        # orientation dofs
        U_k_q   = U_k  [-2*N: ]
        U_k_qR  = U_k_q[    :N]
        U_k_qL  = U_k_q[   N: ]

        # position dimensions
        nU_k    = U_k.shape[0]
        nU_k_xy = U_k_xy.shape[0]
        nU_k_x  = U_k_x.shape[0]
        nU_k_y  = U_k_y.shape[0]

        # orientation dimensions
        nU_k_q  = U_k_q.shape[0]
        nU_k_qR = U_k_qR.shape[0]
        nU_k_qL = U_k_qL.shape[0]

        # initialize with actual values, else take last known solution
        # NOTE for warmstart last solution is taken from qpOASES internal memory
        if not self._qp_is_initialized:
            # TODO guess initial active set
            # this requires changes to the python interface
            pass

        # calculate some common sub expressions
        self._calculate_common_expressions()

        # calculate Jacobian parts that are non-trivial, i.e. wrt. to orientation
        self._calculate_derivatives()

        # POSITION QP
        # rename matrices
        Q_k_x = self.Q_k_x
        Q_k_y = self.Q_k_x # NOTE it's exactly the same!
        p_k_x = self.p_k_x
        p_k_y = self.p_k_y

        # ORIENTATION QP
        # rename matrices
        Q_k_qR = self.Q_k_qR
        Q_k_qL = self.Q_k_qL
        p_k_qR = self.p_k_qR
        p_k_qL = self.p_k_qL

        # define QP matrices
        # Gauss-Newton Hessian approximation
        # define sub blocks
        # H = (Hxy | Hqx)
        #     (Hxq | Hqq)
        Hxx = self.qp_H[:nU_k_xy,:nU_k_xy]
        Hxq = self.qp_H[:nU_k_xy,nU_k_xy:]
        Hqx = self.qp_H[nU_k_xy:,:nU_k_xy]
        Hqq = self.qp_H[nU_k_xy:,nU_k_xy:]

        # fill matrices
        Hxx[ :nU_k_x, :nU_k_x] = Q_k_x
        Hxx[-nU_k_y:,-nU_k_y:] = Q_k_y

        Hqq[ :nU_k_qR, :nU_k_qR] = Q_k_qR
        Hqq[-nU_k_qL:,-nU_k_qL:] = Q_k_qL
        #self.qp_H[...] = numpy.eye(self.nv)

        # Gradient of Objective
        # define sub blocks
        # g = (gx)
        #     (gq)
        gx = self.qp_g[:nU_k_xy]
        gq = self.qp_g[-nU_k_q:]

        # gx = ( U_k_x.T Q_k_x + p_k_x )
        gx[ :nU_k_x] = U_k_x.dot(Q_k_x) + p_k_x
        gx[-nU_k_y:] = U_k_y.dot(Q_k_y) + p_k_y

        # gq = ( U_k_q.T Q_k_q + p_k_q )
        gq[ :nU_k_qR] = U_k_qR.dot(Q_k_qR) + p_k_qR
        gq[-nU_k_qL:] = U_k_qL.dot(Q_k_qL) + p_k_qL

        # CONSTRAINTS
        # A = ( A_xy, A_xyq )
        #     (    0, A_q   )
        A_xy   = self.qp_A  [:self.nc_pos,:nU_k_xy]
        A_xyq  = self.qp_A  [:self.nc_pos,-nU_k_q:]
        lbA_xy = self.qp_lbA[:self.nc_pos]
        ubA_xy = self.qp_ubA[:self.nc_pos]

        A_q   = self.qp_A  [-self.nc_ori:,-nU_k_q:]
        lbA_q = self.qp_lbA[-self.nc_ori:]
        ubA_q = self.qp_ubA[-self.nc_ori:]

        # linearized constraints are given by
        # lbA - A * U_k <= nablaA * Delta_U_k <= ubA - A * U_k
        A_xy[...]   = self.A_pos_x
        A_xyq[...]  = self.A_pos_q
        lbA_xy[...] = self.lbA_pos - self.A_pos_x.dot(U_k_xy)
        ubA_xy[...] = self.ubA_pos - self.A_pos_x.dot(U_k_xy)

        A_q[...]   = self.A_ori
        lbA_q[...] = self.lbA_ori - self.A_ori.dot(U_k_q)
        ubA_q[...] = self.ubA_ori - self.A_ori.dot(U_k_q)

    def _calculate_common_expressions(self):
        """
        encapsulation of complicated matrix assembly of former orientation and
        position QP sub matrices
        """
        #rename for convenience
        N  = self.N
        nf = self.nf

        # weights
        alpha = self.a
        beta  = self.b
        gamma = self.c
        delta = self.d

        # matrices
        E_FR = self.E_FR
        E_FL = self.E_FL

        Pvs = self.Pvs
        Pvu = self.Pvu
        Pzs = self.Pzs
        Pzu = self.Pzu

        c_k_x = self.c_k_x
        c_k_y = self.c_k_y
        f_k_x = self.f_k_x
        f_k_y = self.f_k_y
        f_k_qR = self.f_k_qR
        f_k_qL = self.f_k_qL

        v_kp1 = self.v_kp1
        V_kp1 = self.V_kp1

        dC_kp1_x_ref = self.dC_kp1_x_ref
        dC_kp1_y_ref = self.dC_kp1_y_ref
        dC_kp1_q_ref = self.dC_kp1_q_ref

        # POSITION QP MATRICES
        # Q_k_x = ( Q_k_xXX Q_k_xXF ) = Q_k_y
        #         ( Q_k_xFX Q_k_xFF )
        Q_k_x = self.Q_k_x

        a = 0; b = N
        c = 0; d = N
        Q_k_xXX = Q_k_x[a:b,c:d]

        a = 0; b = N
        c = N; d = N+nf
        Q_k_xXF = Q_k_x[a:b,c:d]

        a = N; b = N+nf
        c = 0; d = N
        Q_k_xFX = Q_k_x[a:b,c:d]

        a = N; b = N+nf
        c = N; d = N+nf
        Q_k_xFF = Q_k_x[a:b,c:d]

        # Q_k_xXX = (  0.5 * a * Pvu^T * Pvu + c * Pzu^T * Pzu + d * I )
        # Q_k_xXF = ( -0.5 * c * Pzu^T * V_kp1 )
        # Q_k_xFX = ( -0.5 * c * Pzu^T * V_kp1 )^T
        # Q_k_xFF = (  0.5 * c * V_kp1^T * V_kp1 )
        Q_k_xXX[...] = (
              alpha * Pvu.transpose().dot(Pvu)
            + gamma * Pzu.transpose().dot(Pzu)
            + delta * numpy.eye(N)
        )
        Q_k_xXF[...] = - gamma * Pzu.transpose().dot(V_kp1)
        Q_k_xFX[...] = Q_k_xXF.transpose()
        Q_k_xFF[...] =   gamma * V_kp1.transpose().dot(V_kp1)

        # p_k_x = ( p_k_xX )
        #         ( p_k_xF )
        p_k_x = self.p_k_x
        p_k_xX = p_k_x[   :N]
        p_k_xF = p_k_x[-nf: ]

        # p_k_xX = (  0.5 * a * Pvu^T * Pvu + c * Pzu^T * Pzu + d * I )
        # p_k_xF = ( -0.5 * c * Pzu^T * V_kp1 )
        p_k_xX[...] = alpha * Pvu.transpose().dot(  Pvs.dot(c_k_x) - dC_kp1_x_ref) \
                    + gamma * Pzu.transpose().dot(  Pzs.dot(c_k_x) - v_kp1.dot(f_k_x))
        p_k_xF[...] =-gamma * V_kp1.transpose().dot(Pzs.dot(c_k_x) - v_kp1.dot(f_k_x))

        # p_k_y = ( p_k_yX )
        #         ( p_k_yF )
        p_k_y = self.p_k_y
        p_k_yX = p_k_y[   :N]
        p_k_yF = p_k_y[-nf: ]

        # p_k_yX = (  0.5 * a * Pvu^T * Pvu + c * Pzu^T * Pzu + d * I )
        # p_k_yF = ( -0.5 * c * Pzu^T * V_kp1 )
        p_k_yX[...] = alpha * Pvu.transpose().dot(  Pvs.dot(c_k_y) - dC_kp1_y_ref) \
                    + gamma * Pzu.transpose().dot(  Pzs.dot(c_k_y) - v_kp1.dot(f_k_y))
        p_k_yF[...] =-gamma * V_kp1.transpose().dot(Pzs.dot(c_k_y) - v_kp1.dot(f_k_y))

        # ORIENTATION QP MATRICES
        # Q_k_qR = ( 0.5 * a * Pvu^T * E_FR^T *  E_FR * Pvu )
        Q_k_qR = self.Q_k_qR
        Q_k_qR[...] = alpha * Pvu.transpose().dot(E_FR.transpose()).dot(E_FR).dot(Pvu)

        # p_k_qR = (       a * Pvu^T * E_FR^T * (E_FR * Pvs * f_k_qR + dC_kp1_q_ref) )
        p_k_qR = self.p_k_qR
        p_k_qR[...] = alpha * Pvu.transpose().dot(E_FR.transpose()).dot(E_FR.dot(Pvs).dot(f_k_qR) - dC_kp1_q_ref)

        # Q_k_qL = ( 0.5 * a * Pvu^T * E_FL^T *  E_FL * Pvu )
        Q_k_qL = self.Q_k_qL
        Q_k_qL[...] = alpha * Pvu.transpose().dot(E_FL.transpose()).dot(E_FL).dot(Pvu)
        # p_k_qL = (       a * Pvu^T * E_FL^T * (E_FL * Pvs * f_k_qL + dC_kp1_q_ref) )
        p_k_qL = self.p_k_qL
        p_k_qL[...] = alpha * Pvu.transpose().dot(E_FL.transpose()).dot(E_FL.dot(Pvs).dot(f_k_qL) - dC_kp1_q_ref)

        # LINEAR CONSTRAINTS
        # CoP constraints
        a = 0
        b = self.nc_cop
        self.A_pos_x[a:b] = self.Acop
        self.lbA_pos[a:b] = self.lbBcop
        self.ubA_pos[a:b] = self.ubBcop

        #foot inequality constraints
        a = self.nc_cop
        b = self.nc_cop + self.nc_foot_position
        self.A_pos_x[a:b] = self.Afoot
        self.lbA_pos[a:b] = self.lbBfoot
        self.ubA_pos[a:b] = self.ubBfoot

        #foot equality constraints
        a = self.nc_cop + self.nc_foot_position
        b = self.nc_cop + self.nc_foot_position + self.nc_fchange_eq
        self.A_pos_x[a:b] = self.eqAfoot
        self.lbA_pos[a:b] = self.eqBfoot
        self.ubA_pos[a:b] = self.eqBfoot

        # velocity constraints on support foot to freeze movement
        a = 0
        b = self.nc_fvel_eq
        self.A_ori  [a:b] = self.A_fvel_eq
        self.lbA_ori[a:b] = self.B_fvel_eq
        self.ubA_ori[a:b] = self.B_fvel_eq

        # box constraints for maximum orientation change
        a = self.nc_fvel_eq
        b = self.nc_fvel_eq + self.nc_fpos_ineq
        self.A_ori  [a:b] = self.A_fpos_ineq
        self.lbA_ori[a:b] = self.lbB_fpos_ineq
        self.ubA_ori[a:b] = self.ubB_fpos_ineq

        # box constraints for maximum angular velocity
        a = self.nc_fvel_eq + self.nc_fpos_ineq
        b = self.nc_fvel_eq + self.nc_fpos_ineq + self.nc_fvel_ineq
        self.A_ori  [a:b] = self.A_fvel_ineq
        self.lbA_ori[a:b] = self.lbB_fvel_ineq
        self.ubA_ori[a:b] = self.ubB_fvel_ineq

    def _calculate_derivatives(self):
        """ calculate the Jacobian of the constraints function """

        # COP CONSTRAINTS
        # build the constraint enforcing the center of pressure to stay inside
        # the support polygon given through the convex hull of the foot.

        # define dummy values
        # D_kp1 = (D_kp1x, Dkp1_y)
        D_kp1  = numpy.zeros( (self.nFootEdge*self.N, 2*self.N), dtype=float )
        D_kp1x = D_kp1[:, :self.N] # view on big matrix
        D_kp1y = D_kp1[:,-self.N:] # view on big matrix
        b_kp1 = numpy.zeros( (self.nFootEdge*self.N,), dtype=float )

        # change entries according to support order changes in D_kp1
        theta_vec = [self.f_k_q,self.F_k_q[0],self.F_k_q[1]]
        for i in range(self.N):
            theta = theta_vec[self.supportDeque[i].stepNumber]

            # NOTE THIS CHANGES DUE TO APPLYING THE DERIVATIVE!
            rotMat = numpy.array([
                # old
                # [ cos(theta), sin(theta)],
                # [-sin(theta), cos(theta)]
                # new: derivative wrt to theta
                [-numpy.sin(theta), numpy.cos(theta)],
                [-numpy.cos(theta),-numpy.sin(theta)]
            ])

            if self.supportDeque[i].foot == "left" :
                A0 = self.A0lf.dot(rotMat)
                B0 = self.ubB0lf
                D0 = self.A0dlf.dot(rotMat)
                d0 = self.ubB0dlf
            else :
                A0 = self.A0rf.dot(rotMat)
                B0 = self.ubB0rf
                D0 = self.A0drf.dot(rotMat)
                d0 = self.ubB0drf

            # get support foot and check if it is double support
            for j in range(self.nf):
                if self.V_kp1[i,j] == 1:
                    if self.fsm_states[j] == 'D':
                        A0 = D0
                        B0 = d0
                else:
                    pass

            for k in range(self.nFootEdge):
                # get d_i+1^x(f^theta)
                D_kp1x[i*self.nFootEdge+k, i] = A0[k][0]
                # get d_i+1^y(f^theta)
                D_kp1y[i*self.nFootEdge+k, i] = A0[k][1]
                # get right hand side of equation
                b_kp1 [i*self.nFootEdge+k]    = B0[k]

        #rename for convenience
        N  = self.N
        nf = self.nf
        PzuV  = self.PzuV
        PzuVx = self.PzuVx
        PzuVy = self.PzuVy
        PzsC  = self.PzsC
        PzsCx = self.PzsCx
        PzsCy = self.PzsCy
        v_kp1fc   = self.v_kp1fc
        v_kp1fc_x = self.v_kp1fc_x
        v_kp1fc_y = self.v_kp1fc_y

        # build constraint transformation matrices
        # PzuV = ( PzuVx )
        #        ( PzuVy )

        # PzuVx = ( Pzu | -V_kp1 |   0 |      0 )
        PzuVx[:,      :self.N        ] =  self.Pzu # TODO this is constant in matrix and should go into the build up matrice part
        PzuVx[:,self.N:self.N+self.nf] = -self.V_kp1

        # PzuVy = (   0 |      0 | Pzu | -V_kp1 )
        PzuVy[:,-self.N-self.nf:-self.nf] =  self.Pzu # TODO this is constant in matrix and should go into the build up matrice part
        PzuVy[:,       -self.nf:       ] = -self.V_kp1

        # PzuV = ( PzsCx ) = ( Pzs * c_k_x)
        #        ( PzsCy )   ( Pzs * c_k_y)
        PzsCx[...] = self.Pzs.dot(self.c_k_x) #+ self.v_kp1.dot(self.f_k_x)
        PzsCy[...] = self.Pzs.dot(self.c_k_y) #+ self.v_kp1.dot(self.f_k_y)

        # v_kp1fc = ( v_kp1fc_x ) = ( v_kp1 * f_k_x)
        #           ( v_kp1fc_y )   ( v_kp1 * f_k_y)
        v_kp1fc_x[...] = self.v_kp1.dot(self.f_k_x)
        v_kp1fc_y[...] = self.v_kp1.dot(self.f_k_y)

        # build CoP linear constraints
        # NOTE D_kp1 is member and D_kp1 = ( D_kp1x | D_kp1y )
        #      D_kp1x,y contains entries from support polygon
        dummy = D_kp1.dot(PzuV)
        dummy = dummy.dot(self.dofs[:2*(N+nf)])

        # CoP constraints
        a = 0
        b = self.nc_cop
        self.A_pos_q[a:b, :N] = \
           dummy.dot(self.derv_Acop_map).dot(self.E_FR_bar).dot(self.Ppu)

        self.A_pos_q[a:b,-N:] = \
            dummy.dot(self.derv_Acop_map).dot(self.E_FL_bar).dot(self.Ppu)

        # FOOT POSITION CONSTRAINTS
        # defined on the horizon
        # inequality constraint on both feet A u + B <= 0
        # A0 R(theta) [Fx_k+1 - Fx_k] <= ubB0
        #             [Fy_k+1 - Fy_k]

        matSelec = numpy.array([ [1, 0],[-1, 1] ])
        footSelec = numpy.array([ [self.f_k_x, 0],[self.f_k_y, 0] ])
        theta_vec = [self.f_k_q, self.F_k_q[0]]

        # rotation matrice from F_k+1 to F_k
        # NOTE THIS CHANGES DUE TO APPLYING THE DERIVATIVE!
        rotMat1 = numpy.array([
            # old
            # [cos(theta_vec[0]), sin(theta_vec[0])],
            # [-sin(theta_vec[0]), cos(theta_vec[0])]
            # new: derivative wrt to theta
            [-numpy.sin(theta_vec[0]), numpy.cos(theta_vec[0])],
            [-numpy.cos(theta_vec[0]),-numpy.sin(theta_vec[0])]
        ])
        rotMat2 = numpy.array([
            # old
            # [cos(theta_vec[1]), sin(theta_vec[1])],
            # [-sin(theta_vec[1]), cos(theta_vec[1])]
            # new
            [-numpy.sin(theta_vec[1]), numpy.cos(theta_vec[1])],
            [-numpy.cos(theta_vec[1]),-numpy.sin(theta_vec[1])]
        ])
        nf = self.nf
        nEdges = self.A0l.shape[0]
        N = self.N
        ncfoot = nf * nEdges

        if self.currentSupport.foot == "left":
            A_f1 = self.A0r.dot(rotMat1)
            A_f2 = self.A0l.dot(rotMat2)
        else :
            A_f1 = self.A0l.dot(rotMat1)
            A_f2 = self.A0r.dot(rotMat2)

        tmp1 = numpy.array( [A_f1[:,0],numpy.zeros((nEdges,),dtype=float)] )
        tmp2 = numpy.array( [numpy.zeros((nEdges,),dtype=float),A_f2[:,0]] )
        tmp3 = numpy.array( [A_f1[:,1],numpy.zeros((nEdges,),dtype=float)] )
        tmp4 = numpy.array( [numpy.zeros(nEdges,),A_f2[:,1]] )

        X_mat = numpy.concatenate( (tmp1.T,tmp2.T) , 0)
        A0x = X_mat.dot(matSelec)
        Y_mat = numpy.concatenate( (tmp3.T,tmp4.T) , 0)
        A0y = Y_mat.dot(matSelec)

        dummy = numpy.concatenate ((
            numpy.zeros((ncfoot,N),dtype=float), A0x,
            numpy.zeros((ncfoot,N),dtype=float), A0y
            ), 1
        )
        dummy = dummy.dot(self.dofs[:2*(N+nf)])

        #foot inequality constraints
        a = self.nc_cop
        b = self.nc_cop + self.nc_foot_position
        self.A_pos_q[a:b, :N] = dummy.dot(self.derv_Afoot_map).dot(self.E_FR_bar).dot(self.Ppu)
        self.A_pos_q[a:b,-N:] = dummy.dot(self.derv_Afoot_map).dot(self.E_FL_bar).dot(self.Ppu)

    def _solve_qp(self):
        """
        Solve QP first run with init functionality and other runs with warmstart
        """
        self.cpu_time = 2.9 # ms
        self.nwsr = 1000 # unlimited bounded
        if not self._qp_is_initialized:
            ret, nwsr, cputime = self.qp.init(
                self.qp_H, self.qp_g, self.qp_A,
                self.qp_lb, self.qp_ub,
                self.qp_lbA, self.qp_ubA,
                self.nwsr, self.cpu_time
            )
            self._qp_is_initialized = True
        else:
            ret, nwsr, cputime = self.qp.hotstart(
                self.qp_H, self.qp_g, self.qp_A,
                self.qp_lb, self.qp_ub,
                self.qp_lbA, self.qp_ubA,
                self.nwsr, self.cpu_time
            )

        # orientation primal solution
        self.qp.getPrimalSolution(self.dofs)

        # save qp solver data
        self.qp_nwsr    = nwsr          # working set recalculations
        self.qp_cputime = cputime*1000. # in milliseconds (set to 2.9ms)

    def _postprocess_solution(self):
        """ Get solution and put it back into generator data structures """
        # rename for convenience
        N  = self.N
        nf = self.nf

        # extract dofs
        # dofs = ( dddC_k_x ) N
        #        (    F_k_x ) nf
        #        ( dddC_k_y ) N
        #        (    F_k_y ) nf
        #        ( dddF_k_q ) N
        #        ( dddF_k_q ) N

        # NOTE this time we add an increment to the existing values
        # data(k+1) = data(k) + alpha * dofs

        # TODO add line search when problematic
        alpha = 1.0

        # x values
        self.dddC_k_x[:]  += alpha * self.dofs[0  :0+N   ]
        self.F_k_x[:]     += alpha * self.dofs[0+N:0+N+nf]

        # y values
        a = N + nf
        self.dddC_k_y[:]  += alpha * self.dofs[a  :a+N   ]
        self.F_k_y[:]     += alpha * self.dofs[a+N:a+N+nf]

        # feet orientation
        a =2*(N + nf)
        self.dddF_k_qR[:] += alpha * self.dofs[  a:a+N]
        self.dddF_k_qL[:] += alpha * self.dofs[ -N:]

    def update(self):
        """
        overload update function to define time dependent support foot selection
        matrix.
        """
        ret = super(NMPCGenerator, self).update()

        # update selection matrix when something has changed
        self._update_foot_selection_matrix()

        return ret

    def _update_foot_selection_matrix(self):
        """ get right foot selection matrix """
        i = 0
        for j in range(self.N):
            self.derv_Acop_map[i:i+self.nFootEdge,j] = 1.0
            i += self.nFootEdge

        self.derv_Afoot_map[...] = 0.0

        i = self.nFootPosHullEdges
        for j in range(self.nf-1):
            for k in range(self.N):
                if self.V_kp1[k,j] == 1:
                    self.derv_Afoot_map[i:i+self.nFootPosHullEdges,k] = 1.0
                    i += self.nFootPosHullEdges
                    break
            else:
                self.derv_Afoot_map[i:i+self.nFootPosHullEdges,j] = 0.0