def run_qso_sims(optim, num_reps=None, verbosity=None, report_phys_params=None, save_results=None, scen_idx=None, reps_idx=None, num_threads=None, num_tslots=None, evo_time=None, fid_err_targ=None, numer_acc=None): """ Attempts a pulse optimisation for specified number of repititions (num_reps). Where kwargs are not passed the value is taken from the configuration, except scen_idx and reps_idx which are only used in output file names. This function is called from within the main top-level functions of this module. Returns ------- multires : MultiRepResult Containing RepResult object for each repetition. The analysis is run on multires, so the averaged statics are available as attributes. """ #print("run_qso_sims\nnum_reps {}, job_idx {}".format(num_reps, job_idx)) cfg = optim.config dyn = optim.dynamics tc = optim.termination_conditions fid_comp = dyn.fid_computer pgen = optim.pulse_generator cfg_str = qso.get_cfg_str(optim, num_tslots=num_tslots, evo_time=evo_time, fid_err_targ=fid_err_targ, numer_acc=numer_acc) out_file_ext = qso.get_out_file_ext(cfg.data_file_ext, job_id=cfg.job_id, scen_idx=scen_idx, reps_idx=reps_idx) if num_reps is None: num_reps = cfg.num_reps if verbosity is None: verbosity = cfg.verbosity if report_phys_params is None: report_phys_params = cfg.report_phys_params if save_results is None: save_results = cfg.save_results if num_threads is None: num_threads = cfg.num_threads if num_tslots is not None: dyn.num_tslots = num_tslots pgen.num_tslots = num_tslots pgen.tau = None if evo_time is not None: dyn.evo_time = evo_time pgen.pulse_time = evo_time pgen.tau = None if fid_err_targ is not None: tc.fid_err_targ = fid_err_targ if numer_acc is not None: fid_comp.numer_acc = numer_acc # Only use stdout for logging messages when first process # (which is true when the idx vars are both None or 0) base_log = True if scen_idx is not None or reps_idx is not None: datetimestamp = datetime.datetime.now().strftime('%d%b_%H-%M') script_name = "{}-{}.{}".format(cfg_str, datetimestamp, out_file_ext) script_path = os.path.join(cfg.output_dir, script_name) lfh = open(script_path, 'a') base_log = False else: lfh = sys.stdout if verbosity > 0: lfh.write("want {} threads per rep\n".format(num_threads)) try: import mkl use_mkl = True except: use_mkl = False if use_mkl: mkl.set_num_threads(num_threads) if verbosity > 0: lfh.write("Number of threads set as {}\n".format( mkl.get_max_threads())) else: if verbosity > 0: lfh.write("mkl unavailable\n") if verbosity > 0: lfh.write("Running {} reps under scen_idx {}, reps_idx {}\n".format( num_reps, scen_idx, reps_idx)) multires = qsoresult.MultiRepResult(tc.fid_err_targ, fid_comp.local, num_tslots=num_tslots, evo_time=evo_time, numer_acc=numer_acc) if verbosity > 2: lfh.write("multires optional attribs: num_tslots={}, evo_time={}, " "fid_err_targ={}, numer_acc={}\n".format( multires.num_tslots, multires.evo_time, multires.fid_err_targ, multires.numer_acc)) # Repetition paramaters and results arrays # force the random number generator to reseed, as would cause issue # when using multiprocessing np.random.seed() # set up the decoupling slots # dyn.num_decoup_tslots implies that a specific decoup tslot has been given if dyn.num_decoup_tslots is not None: if dyn.num_decoup_tslots == 0: # assume all timeslots dyn.decoup_tslots = np.ones([dyn.num_tslots]) else: dyn.decoup_tslots = np.zeros([dyn.num_tslots]) dyn.decoup_tslots[:dyn.num_decoup_tslots] = 1 if verbosity > 2: lfh.write("Decoup timeslots: {}\n".format(dyn.decoup_tslots)) if len(dyn.decoup_tslots) != dyn.num_tslots: raise RuntimeError("Number of decoupling tslots {} not equal to " "number of timeslots {}".format( len(dyn.decoup_tslots, num_tslots))) try: for k in range(num_reps): # If hspace_order has random 0 index or 01 separation # (relating to the position and separation of the qubits # which the 2-qubit gate acts upon) then regenerate the # the hspace_order for each repetition if dyn.auto_hspace and (dyn.hspace_0_idx < 0 or dyn.hspace_01_sep < 0): dyn.hspace_order = qso.get_coupling_hspace( dyn.num_qubits, dyn.hspace_0_idx, dyn.hspace_01_sep) if verbosity > 0: lfh.write("reconfiguring drift with hspace_order " "= {}\n".format(dyn.hspace_order)) dyn.drift_dyn_gen = qso.get_drift(dyn) # Generate# pulses for each control init_amps = np.zeros([dyn.num_tslots, dyn.num_ctrls]) pgen = optim.pulse_generator for j in range(dyn.num_ctrls): init_amps[:, j] = pgen.gen_pulse() if dyn.decoup_x > 0: for i in dyn.Sx_cidx: init_amps[:, i] += dyn.decoup_tslots * dyn.decoup_x if dyn.decoup_y > 0: for i in dyn.Sy_cidx: init_amps[:, i] += dyn.decoup_tslots * dyn.decoup_y if dyn.decoup_z > 0: for i in dyn.Sz_cidx: init_amps[:, i] += dyn.decoup_tslots * dyn.decoup_z dyn.initialize_controls(init_amps) if cfg.save_initial_amps: pulsefile = "init_amps_{}_rep{}.{}".format( cfg_str, k + 1, out_file_ext) pfpath = os.path.join(cfg.output_dir, pulsefile) dyn.save_amps(pfpath, times="exclude") if verbosity > 1: lfh.write("Initial amps saved\n") if optim.dump: optim.dump.clear() optim.dump.dump_file_ext = out_file_ext optim.dump.fname_base = "optim_dump_rep{}_{}".format( k + 1, cfg_str) if dyn.dump: dyn.dump.clear() dyn.dump.dump_file_ext = out_file_ext dyn.dump.fname_base = "dyn_dump_rep{}_{}".format( k + 1, cfg_str) if verbosity > 0: lfh.write("\nStarting pulse optimisation {} of {}\n".format( k + 1, num_reps)) if verbosity > 1: lfh.write("Max wall time {}\n".format( optim.termination_conditions.max_wall_time)) optres = optim.run_optimization() optres.optim_dump = optim.dump optres.dyn_dump = dyn.dump repres = multires.add_optim_result(optres) if cfg.save_final_amps: pulsefile = "final_amps_{}_rep{}.{}".format( cfg_str, k + 1, out_file_ext) pfpath = os.path.join(cfg.output_dir, pulsefile) dyn.save_amps(pfpath, times="exclude") if verbosity > 1: lfh.write("Final amps saved\n") if verbosity > 0 and cfg.report_stats: lfh.write("Optimising complete. Stats follow:\n") optres.stats.report() if verbosity > 0: lfh.write("********* Summary *****************\n") lfh.write("Initial fidelity error {}\n".format( optres.initial_fid_err)) lfh.write("Final fidelity error {}\n".format(optres.fid_err)) if fid_comp.local: lfh.write("Final TRUE choi fidelity error {}\n".format( 1 - dyn.fid_computer.compute_global_choi_fid())) lfh.write("Terminated due to {}\n".format( optres.termination_reason)) lfh.write("Number of iterations {}\n".format(optres.num_iter)) lfh.write("Completed in {} HH:MM:SS.US\n".format( datetime.timedelta(seconds=optres.wall_time))) lfh.write("Final gradient normal {}\n".format( optres.grad_norm_final)) lfh.write("***********************************\n") if optres.optim_dump: if verbosity > 0: lfh.write("Optim dump saved\n") optres.optim_dump.writeout() if optres.dyn_dump: if verbosity > 0: lfh.write("Dynamics dump saved\n") optres.dyn_dump.writeout() if cfg.keep_optim_result: repres.optim_result = optres else: del (optres) except KeyboardInterrupt as e: lfh.write("\nProcessing interrupted\n") if not base_log: lfh.close() raise e if verbosity > 0: lfh.write("\n***** ALL SEARCHING FINISHED *****\n\n") multires.analyse_results() if save_results: fname = "results_{}.{}".format(cfg_str, out_file_ext) fpath = os.path.join(cfg.output_dir, fname) with open(fpath, 'w') as fh: multires.write_results(fh) if verbosity > 0: lfh.write("Results saved to:\n{}\n".format(fpath)) if verbosity > 0: lfh.write("\nFull results\n") multires.write_results(lfh) # Print very short summary multires.report_analysis(f=lfh) if report_phys_params: qso.print_phys_params(optim, f=lfh) if not base_log: lfh.close() return multires
def run_qso_sims_numer_acc_limit(optim, lfh=sys.stdout, verbosity=None, report_phys_params=None, save_results=None, num_cpus=None): """ Perform an automatic search for the numerical accuracy threshold. Looking to get a spread of results in between the no affect from numerical accuracy parameter (numer_acc) and numer_acc too large for any pulse optimisation success. In each scenario different numerical accuracies are tried with the specified number of repetitions (num_reps). The result of interest being the proportion of pulse optimisations successfully finding the target within the the fidelity target, referred to as the success proportion (succ_prop). It will start from an estimate of the lower (na_lb) and upper (na_ub) boundaries for the numer_acc (see fidcomp parameters). The boundaries will be pushed until there is a scenario falling on each side of the boundaries, based on the succ_prop of the scenario. That is the na_lb is the highest numer_acc that results in a succ_prop greater than success_prop_uthresh. Similarly, the na_ub is the lowest numer_acc value that results in succ_prop less than success_prop_lthresh. The na_lb is halved until succ_prop > success_prop_uthresh. The na_ub is doubled until succ_prop < success_prop_lthresh. Once some boundaries have been located the search looks to add succ_prop results for an even spread of numer_acc scenarios between the bounds. This is achieved by bisecting the largest numer_acc gaps between scenarios. This may also extend the bounds. The process will continue until the number of scenarios tested reaches optimconfig.max_mp_scens. If there is already a collation file in the results output directory, then this will be loaded as the current status for the search, effectively meaning that it continues where it left off. This is designed such that if processing is interrupted, then it can be restarted. Note then that if this is called again with the same configuration, with a finite max_mp_scen, after having completed successfully, no further scenarios will be attempted. Python multiprocessing is used to share the repetitions and or scenarios across the specified number of cpus (num_cpus). If num_cpus is less than 2*num_reps then only one scenario will be run at a time, as the repetitions will be split across the availble cpus. Otherwise it is possible that num_cpus // num_reps will be run concurrently. For efficient use of resources it only makes sense to specifiy num_cpus < num_reps or num_cpus = n*num_reps where n is a positive integer. Practically, at least 50 reps are required for a reliable outcome. So unless a large cluster is in use, then one scenario at a time is all that happen. Nothing is returned from this function. A results file will be produced by each process that performs one or more repetitions of the pulse optimisation. All the repetition results will also be combined into one file. The main output of this function is a collated results file called "nal_collate_*". This will be grouped by scenario, with averaged statistics. """ cfg = optim.config tc = optim.termination_conditions dyn = optim.dynamics fid_comp = dyn.fid_computer if num_cpus is None: num_cpus = cfg.num_cpus if verbosity is None: verbosity = cfg.verbosity if report_phys_params is None: report_phys_params = cfg.report_phys_params if save_results is None: save_results = cfg.save_results cfg_str = qso.get_cfg_str(optim) out_file_ext = qso.get_out_file_ext(cfg.data_file_ext, job_id=cfg.job_id) coll_fname = "nal_collate_{}.{}".format(cfg_str, out_file_ext) coll_fpath = os.path.join(cfg.output_dir, coll_fname) comb_fname = "nal_comb_{}.{}".format(cfg_str, out_file_ext) comb_fpath = os.path.join(cfg.output_dir, comb_fname) def fill_na_list_gaps(active_na, test_na=[]): """Add numer_acc to the list where the biggest gaps are through bisection. """ if num_scen <= len(test_na): return sorted(test_na) sel = np.diff(np.asarray(active_na)).argsort()[::-1] if num_scen - len(test_na) > len(sel): # More possible available scenarios than gaps scen_per_gap = num_scen - len(test_na) - len(sel) + 1 num_gaps = len(sel) else: scen_per_gap = 1 num_gaps = 1 if verbosity > 2: lfh.write("{} gaps with {} scen per gap (initially)\n".format( num_gaps, scen_per_gap)) for i in range(num_gaps): ld_idx = sel[i] new_na = np.linspace(active_na[ld_idx], active_na[ld_idx + 1], scen_per_gap + 1, endpoint=False) for na in new_na[1:]: #print("Adding {}".format(round_sigfigs(na, 8))) test_na.append(round_sigfigs(na, 8)) num_gaps = 1 return sorted(test_na) def writeout_results(coll_na, all_na): """Loop through them in order writing out the analysis and all the results """ clf = open(coll_fpath, 'w') inc_header_clf = True cbf = open(comb_fpath, 'w') inc_header_cbf = True for numer_acc in all_na: na_res = coll_na.get(numer_acc, None) if not na_res: lfh.write("<<< WARNING: No results for " "numer_acc {} >>>\n".format(numer_acc)) continue na_res.add_opt_file_attribs() na_res.write_analysis(clf, inc_header=inc_header_clf) # collation won't have any actual results # if it was loaded from file if len(na_res.results) > 0: if verbosity > 1: lfh.write("Writing out {} results for " "numer_acc={}\n".format(len(na_res.results), numer_acc)) if not na_res.sorted: na_res.sort_results() na_res.write_results(cbf, inc_header=inc_header_cbf) inc_header_clf = False inc_header_cbf = False clf.close() cbf.close() def get_na_lists(coll_na, all_na): """ Determine lists of numer_acc that must be tested and those that are in the active area """ st_idx = -1 end_idx = len(all_na) succ_props = [] i = 0 for numer_acc in all_na: na_res = coll_na.get(numer_acc, None) if not na_res: lfh.write( "<<< WARNING: No results for numer_acc {} >>>".format( numer_acc)) continue if verbosity > 1: lfh.write("Analysising result of combined result:\n" "na: {}, num_res: {}, num_succ: {}\n".format( na_res.numer_acc, na_res.num_res, na_res.num_primary_success)) na_res.succ_prop = (float(na_res.num_primary_success) / na_res.num_res) succ_props.append(na_res.succ_prop) if na_res.succ_prop > fid_comp.success_prop_uthresh: st_idx = i if (na_res.succ_prop < fid_comp.success_prop_lthresh and i < end_idx): end_idx = i i += 1 if verbosity > 0: lfh.write("succ props: {}\n" "Upper threshold last met at idx {}\n" "Lower threshold first met at idx {}\n".format( succ_props, st_idx, end_idx)) test_na = [] # If upper success threshold not met then reduce lowest numer_acc if st_idx < 0: st_idx = 0 if verbosity > 0: lfh.write("Upper threshold not met, reducing min numer_acc\n") test_na.append(all_na[0] / 2) # If lower success threshold not met then increase highest numer_acc if end_idx >= len(all_na): end_idx = len(all_na) if verbosity > 0: lfh.write( "Lower threshold not met, increasing max numer_acc\n") test_na.append(all_na[-1] * 2) else: end_idx += 1 active_na = all_na[st_idx:end_idx] if verbosity > 0: lfh.write("forcing na vals: {}\n" "active na vals (for gaps): {}\n".format( test_na, active_na)) return test_na, active_na # The number of cpus must be some multiple of the number of reps # (or less than). Remaining cpus will be ignored num_scen = num_cpus // cfg.num_reps if num_scen == 1: num_cpus = cfg.num_reps elif num_scen == 0: num_scen = 1 cpus_per_scen = num_cpus // num_scen lfh.write("Running {} concurrent scenarios " "with {} cpus per scenario\n".format(num_scen, cpus_per_scen)) coll_na = {} scen_idx = 0 na_list = [] # look for files to read existing results collf_pat = os.path.join(cfg.output_dir, "nal_collate*.{}".format(cfg.data_file_ext)) if verbosity > 0: lfh.write("Looking for collation file matching {}\n".format(collf_pat)) files = glob.glob(collf_pat) if len(files) > 0: # Take the most recent file, assume last in list collf = files[-1] if verbosity > 0: lfh.write("Loading collation from file:\n{}\n".format(collf)) reslist = qsoresult.MultiRepResult.load_from_txt(collf) for na_res in reslist: na_list.append(na_res.numer_acc) coll_na[na_res.numer_acc] = na_res scen_idx += 1 # otherwise take the initial numer acc values from the settings if len(na_list) < 2: test_na = [fid_comp.st_numer_acc, fid_comp.end_numer_acc] if verbosity > 0: lfh.write("Start with fixed scenarios {}:\n".format(test_na)) test_na = fill_na_list_gaps(test_na + na_list, test_na) else: test_na = fill_na_list_gaps(na_list) if verbosity > 0: lfh.write("All initial scenarios {}:\n".format(test_na)) def_task_kwargs = {'verbosity': verbosity, 'save_results': save_results} # all_res just used for report at the end # note the fid_err_targ and numer_acc are set just to give the # file attributes all_res = qsoresult.MultiRepResult(tc.fid_err_targ, True, numer_acc=fid_comp.st_numer_acc) all_res.add_opt_file_attribs() while scen_idx < cfg.max_mp_scens: try: pool = Pool(processes=num_cpus) async_res = [] for numer_acc in test_na: scen_task_kwargs = def_task_kwargs.copy() scen_task_kwargs['scen_idx'] = scen_idx scen_task_kwargs['numer_acc'] = numer_acc lfh.write("Run scenario numer_acc={} " "with {} cpus\n".format(numer_acc, cpus_per_scen)) num_procs, reps_per_proc, reps_per_proc_rem, threads_per_proc = \ get_mp_params(cfg.num_reps, cpus_per_scen, lfh=lfh, verbosity=verbosity) tkl = get_rep_task_kwargs_list(scen_task_kwargs, num_procs, reps_per_proc, reps_per_proc_rem, threads_per_proc, lfh=lfh, verbosity=verbosity) for task_kwargs in tkl: async_res.append( pool.apply_async(run_qso_sims, (optim, ), task_kwargs)) scen_idx += 1 while not all([ar.ready() for ar in async_res]): for ar in async_res: ar.wait(timeout=0.1) pool.terminate() pool.join() except KeyboardInterrupt as e: pool.terminate() pool.join() raise e # collate all the multiple results by numer_acc # as reps may have been completed in multiple processes. for ar in async_res: multires = ar.get() na_res = coll_na.get(multires.numer_acc, None) if na_res: if verbosity > 2: lfh.write("Result for na {}, num_reps {} being combined" " with existing result for na {}\n".format( multires.numer_acc, multires.num_res, na_res.numer_acc)) na_res.combine(multires) else: if verbosity > 2: lfh.write("New result for na {}, num_reps {}\n".format( multires.numer_acc, multires.num_res)) coll_na[multires.numer_acc] = multires for numer_acc in test_na: na_res = coll_na.get(numer_acc, None) if not na_res: lfh.write("<<< WARNING: No results for " "numer_acc {} >>>\n".format(numer_acc)) continue all_res.combine(na_res) all_na = sorted(coll_na.keys()) if verbosity > 0: lfh.write("All na now: {}\n".format(all_na)) writeout_results(coll_na, all_na) test_na, active_na = get_na_lists(coll_na, all_na) fill_na_list_gaps(active_na, test_na) if verbosity > 0: lfh.write("All chosen na vals: {}\n".format(test_na)) lfh.write("All numer_acc scenarios complete\n") if cfg.verbosity > 0: if all_res: lfh.write("Analysis saved to:\n{}\n".format(coll_fpath)) lfh.write("Results saved to:\n{}\n".format(comb_fpath)) lfh.write("\nFull results\n") all_res.write_results(f=lfh) # Print very short summary all_res.report_analysis(f=lfh) if report_phys_params: qso.print_phys_params(optim, f=lfh)
def run_qso_sims_numer_acc_limit(optim, lfh=sys.stdout, verbosity=None, save_results=None, num_cpus=None): """ Run the QSO simulations using multiprocessing Looking to get a spread of results in between the no affect from numer_acc and numer_acc too large for any pulse optim """ cfg = optim.config tc = optim.termination_conditions dyn = optim.dynamics fid_comp = dyn.fid_computer if num_cpus is None: num_cpus = cfg.num_cpus if verbosity is None: verbosity = cfg.verbosity if save_results is None: save_results = cfg.save_results cfg_str = qso.get_cfg_str(optim) out_file_ext = qso.get_out_file_ext(cfg.data_file_ext, job_id=cfg.job_id) coll_fname = "nal_collate_{}.{}".format(cfg_str, out_file_ext) coll_fpath = os.path.join(cfg.output_dir, coll_fname) comb_fname = "nal_comb_{}.{}".format(cfg_str, out_file_ext) comb_fpath = os.path.join(cfg.output_dir, comb_fname) def fill_na_list_gaps(active_na, test_na=[]): """Add numer_acc to the list where the biggest gaps are through bisection. """ if num_scen <= len(test_na): return sorted(test_na) sel = np.diff(np.asarray(active_na)).argsort()[::-1] if num_scen - len(test_na) > len(sel): # More possible available scenarios than gaps scen_per_gap = num_scen - len(test_na) - len(sel) + 1 num_gaps = len(sel) else: scen_per_gap = 1 num_gaps = 1 if verbosity > 2: lfh.write("{} gaps with {} scen per gap (initially)\n".format( num_gaps, scen_per_gap)) for i in range(num_gaps): ld_idx = sel[i] new_na = np.linspace(active_na[ld_idx], active_na[ld_idx + 1], scen_per_gap + 1, endpoint=False) for na in new_na[1:]: #print("Adding {}".format(round_sigfigs(na, 8))) test_na.append(round_sigfigs(na, 8)) num_gaps = 1 return sorted(test_na) def writeout_results(coll_na, all_na): """Loop through them in order writing out the analysis and all the results """ clf = open(coll_fpath, 'w') inc_header_clf = True cbf = open(comb_fpath, 'w') inc_header_cbf = True for numer_acc in all_na: na_res = coll_na.get(numer_acc, None) if not na_res: lfh.write("<<< WARNING: No results for " "numer_acc {} >>>\n".format(numer_acc)) continue na_res.add_opt_file_attribs() na_res.write_analysis(clf, inc_header=inc_header_clf) # collation won't have any actual results # if it was loaded from file if len(na_res.results) > 0: if verbosity > 1: lfh.write("Writing out {} results for " "numer_acc={}\n".format(len(na_res.results), numer_acc)) if not na_res.sorted: na_res.sort_results() na_res.write_results(cbf, inc_header=inc_header_cbf) inc_header_clf = False inc_header_cbf = False clf.close() cbf.close() def get_na_lists(coll_na, all_na): """ Determine lists of numer_acc that must be tested and those that are in the active area """ st_idx = -1 end_idx = len(all_na) succ_props = [] i = 0 for numer_acc in all_na: na_res = coll_na.get(numer_acc, None) if not na_res: lfh.write( "<<< WARNING: No results for numer_acc {} >>>".format( numer_acc)) continue if verbosity > 1: lfh.write("Analysising result of combined result:\n" "na: {}, num_res: {}, num_succ: {}\n".format( na_res.numer_acc, na_res.num_res, na_res.num_primary_success)) na_res.succ_prop = (float(na_res.num_primary_success) / na_res.num_res) succ_props.append(na_res.succ_prop) if na_res.succ_prop > fid_comp.success_prop_uthresh: st_idx = i if (na_res.succ_prop < fid_comp.success_prop_lthresh and i < end_idx): end_idx = i i += 1 if verbosity > 0: lfh.write("succ props: {}\n" "Upper threshold last met at idx {}\n" "Lower threshold first met at idx {}\n".format( succ_props, st_idx, end_idx)) test_na = [] # If upper success threshold not met then reduce lowest numer_acc if st_idx < 0: st_idx = 0 if verbosity > 0: lfh.write("Upper threshold not met, reducing min numer_acc\n") test_na.append(all_na[0] / 2) # If lower success threshold not met then increase highest numer_acc if end_idx >= len(all_na): end_idx = len(all_na) if verbosity > 0: lfh.write( "Lower threshold not met, increasing max numer_acc\n") test_na.append(all_na[-1] * 2) else: end_idx += 1 active_na = all_na[st_idx:end_idx] if verbosity > 0: lfh.write("forcing na vals: {}\n" "active na vals (for gaps): {}\n".format( test_na, active_na)) return test_na, active_na # The number of cpus must be some multiple of the number of reps # (or less than). Remaining cpus will be ignored num_scen = num_cpus // cfg.num_reps if num_scen == 1: num_cpus = cfg.num_reps elif num_scen == 0: num_scen = 1 cpus_per_scen = num_cpus // num_scen lfh.write("Running {} concurrent scenarios " "with {} cpus per scenario\n".format(num_scen, cpus_per_scen)) coll_na = {} scen_idx = 0 na_list = [] # look for files to read existing results collf_pat = os.path.join(cfg.output_dir, "nal_collate*.{}".format(cfg.data_file_ext)) if verbosity > 0: lfh.write("Looking for collation file matching {}\n".format(collf_pat)) files = glob.glob(collf_pat) if len(files) > 0: # Take the most recent file, assume last in list collf = files[-1] if verbosity > 0: lfh.write("Loading collation from file:\n{}\n".format(collf)) reslist = qsoresult.MultiRepResult.load_from_txt(collf) for na_res in reslist: na_list.append(na_res.numer_acc) coll_na[na_res.numer_acc] = na_res scen_idx += 1 # otherwise take the initial numer acc values from the settings if len(na_list) < 2: test_na = [fid_comp.st_numer_acc, fid_comp.end_numer_acc] if verbosity > 0: lfh.write("Start with fixed scenarios {}:\n".format(test_na)) test_na = fill_na_list_gaps(test_na + na_list, test_na) else: test_na = fill_na_list_gaps(na_list) if verbosity > 0: lfh.write("All initial scenarios {}:\n".format(test_na)) def_task_kwargs = {'verbosity': verbosity, 'save_results': save_results} # all_res just used for report at the end # note the fid_err_targ and numer_acc are set just to give the # file attributes all_res = qsoresult.MultiRepResult(tc.fid_err_targ, True, numer_acc=fid_comp.st_numer_acc) all_res.add_opt_file_attribs() while scen_idx < cfg.max_mp_scens: try: pool = Pool(processes=num_cpus) async_res = [] for numer_acc in test_na: scen_task_kwargs = def_task_kwargs.copy() scen_task_kwargs['scen_idx'] = scen_idx scen_task_kwargs['numer_acc'] = numer_acc lfh.write("Run scenario numer_acc={} " "with {} cpus\n".format(numer_acc, cpus_per_scen)) num_procs, reps_per_proc, reps_per_proc_rem, threads_per_proc = \ get_mp_params(cfg.num_reps, cpus_per_scen, lfh=lfh, verbosity=verbosity) tkl = get_rep_task_kwargs_list(scen_task_kwargs, num_procs, reps_per_proc, reps_per_proc_rem, threads_per_proc, lfh=lfh, verbosity=verbosity) for task_kwargs in tkl: async_res.append( pool.apply_async(run_qso_sims, (optim, ), task_kwargs)) scen_idx += 1 while not all([ar.ready() for ar in async_res]): for ar in async_res: ar.wait(timeout=0.1) pool.terminate() pool.join() except KeyboardInterrupt as e: pool.terminate() pool.join() raise e # collate all the multiple results by numer_acc # as reps may have been completed in multiple processes. for ar in async_res: multires = ar.get() na_res = coll_na.get(multires.numer_acc, None) if na_res: if verbosity > 2: lfh.write("Result for na {}, num_reps {} being combined" " with existing result for na {}\n".format( multires.numer_acc, multires.num_res, na_res.numer_acc)) na_res.combine(multires) else: if verbosity > 2: lfh.write("New result for na {}, num_reps {}\n".format( multires.numer_acc, multires.num_res)) coll_na[multires.numer_acc] = multires for numer_acc in test_na: na_res = coll_na.get(numer_acc, None) if not na_res: lfh.write("<<< WARNING: No results for " "numer_acc {} >>>\n".format(numer_acc)) continue all_res.combine(na_res) all_na = sorted(coll_na.keys()) if verbosity > 0: lfh.write("All na now: {}\n".format(all_na)) writeout_results(coll_na, all_na) test_na, active_na = get_na_lists(coll_na, all_na) fill_na_list_gaps(active_na, test_na) if verbosity > 0: lfh.write("All chosen na vals: {}\n".format(test_na)) lfh.write("All numer_acc scenarios complete\n") if cfg.verbosity > 0: if all_res: lfh.write("Analysis saved to:\n{}\n".format(coll_fpath)) lfh.write("Results saved to:\n{}\n".format(comb_fpath)) lfh.write("\nFull results\n") all_res.write_results(f=lfh) # Print very short summary all_res.report_analysis(f=lfh) qso.print_phys_params(optim, f=lfh)