Esempio n. 1
0
def test_get_ticker_information(mock_get):
    """This function tests the get ticker information method."""
    qtrade = Questrade(token_yaml="access_token.yml")
    ticker_info_single = qtrade.ticker_information("XYZ")
    assert len(ticker_info_single) == 34
    assert ticker_info_single["symbol"] == "XYZ"
    assert ticker_info_single["marketCap"] == 275784564

    ticker_info_multiple = qtrade.ticker_information(["XYZ", "ABC"])
    assert len(ticker_info_multiple) == 2
    assert len(ticker_info_multiple[0]) == 34
    assert len(ticker_info_multiple[1]) == 34
    assert ticker_info_multiple[0]["symbol"] == "XYZ"
Esempio n. 2
0
def test_get_ticker_information(mock_get):
    """This function tests the get ticker information method.
    """
    qtrade = Questrade(token_yaml='access_token.yml')
    ticker_info_single = qtrade.ticker_information('XYZ')
    assert len(ticker_info_single) == 34
    assert ticker_info_single['symbol'] == 'XYZ'
    assert ticker_info_single['marketCap'] == 275784564

    ticker_info_multiple = qtrade.ticker_information(['XYZ', 'ABC'])
    assert len(ticker_info_multiple) == 2
    assert len(ticker_info_multiple[0]) == 34
    assert len(ticker_info_multiple[1]) == 34
    assert ticker_info_multiple[0]['symbol'] == 'XYZ'
from utils import qtrade_date_range, dates_of_interest, account_activity

st.title("My Questrade Dashboard")

# Authenticate
st.write("Welcome! Let's start by authenticating you and your account.")
qtrade_token = "qtrade_token"
overwrite_token = st.text_input(
    "Should we look somewhere other than 'qtrade_token'?")
if overwrite_token:
    qtrade_token = overwrite_token
st.write(f"Looking for a qtrade token in env variable: {qtrade_token}")
try:
    qtrade = Questrade(access_code=os.getenv(qtrade_token))
    aapl, amzn = qtrade.ticker_information(["AAPL", "AMZN"])
    st.write("Authorization sucessful via qtrade_token")
except:
    try:
        qtrade = Questrade(token_yaml="access_token.yml")
        aapl, amzn = qtrade.ticker_information(["AAPL", "AMZN"])
        st.write("Authorization sucessful via access_token")
    except:
        try:
            qtrade.refresh_access_token(
                from_yaml=True, yaml_path="access_token.yml"
            )  # When Qtrade refreshes token, it kills the old credentials
            aapl, amzn = qtrade.ticker_information(["AAPL", "AMZN"])
            st.write("Authorization sucessful via refreshed access_token")
        except:
            st.write(f"ERROR: was unable to authenticate user")
class QuestradeBot:
    def __init__(self, acctNum):
        # Initialize Questrade Instance
        if path.exists("./access_token.yml"):
            #print("first try in questrade")
            self.qtrade = Questrade(token_yaml='./access_token.yml')
            try:
                acct_list = self.qtrade.get_account_id()
                #print(acctNum in acct_list)
                assert acctNum in acct_list
            except:
                #print("first if statement")
                self.qtrade.refresh_access_token(from_yaml=True)
                self.qtrade = Questrade(token_yaml='./access_token.yml')
                try:
                    assert acctNum in self.qtrade.get_account_id()
                except:
                    #print("yml file removed!")
                    remove("./access_token.yml")
                    # get new access code
                    access_code = new_access_code()
                    self.qtrade = Questrade(access_code=access_code)
        else:
            #print("no yml file exist")
            access_code = new_access_code()
            self.qtrade = Questrade(access_code=access_code)
            try:
                accts_list = self.qtrade.get_account_id()
            except:
                while not isinstance(accts_list, list):
                    #print("in while loop")
                    access_code = new_access_code()
                    self.qtrade = Questrade(access_code=access_code)

        self.acctNum = acctNum

    def get_acct_id(self):
        return self.qtrade.get_account_id()

    def get_ticker_info(self, symbol: str):
        return self.qtrade.ticker_information(symbol)

    def get_acct_positions(self):
        return self.qtrade.get_account_positions(self.acctNum)

    def _get_account_activities(self):
        return self.qtrade.get_account_activities(self.acctNum)

    def get_usd_total_equity(self):
        balance = self.get_account_balance_summary()
        return balance.loc['USD', 'Total_Equity']

    def get_usd_total_mv(self):
        balance = self.get_account_balance_summary()
        return balance.loc['USD', 'Market_Value']

    def get_cad_total_equity(self):
        balance = self.get_account_balance_summary()
        return balance.loc['CAD', 'Total_Equity']

    def get_cad_total_mv(self):
        balance = self.get_account_balance_summary()
        return balance.loc['CAD', 'Market_Value']

    def get_usd_total_cost(self):
        positions = self.get_acct_positions()
        total_cost = 0
        for pos in positions:
            curr_cost = pos['totalCost']
            total_cost += curr_cost
        return total_cost

    def get_account_balance_summary(self):
        bal = self.qtrade.get_account_balances(self.acctNum)

        data = {
            'Currency': [],
            'Cash': [],
            'Market_Value': [],
            'Total_Equity': [],
            'Cash (%)': [],
            'Investment (%)': []
        }

        for x in bal['perCurrencyBalances']:
            data['Currency'].append(x['currency'])
            data['Cash'].append(x['cash'])
            data['Market_Value'].append(x['marketValue'])
            data['Total_Equity'].append(x['totalEquity'])
            if x['totalEquity'] != 0:
                data['Cash (%)'].append(
                    round(100 * x['cash'] / x['totalEquity'], 2))
                data['Investment (%)'].append(
                    round(100 * x['marketValue'] / x['totalEquity'], 2))
            else:
                data['Cash (%)'].append(0)
                data['Investment (%)'].append(0)

        df = pd.DataFrame(data)
        df.set_index('Currency', inplace=True)
        #print(tabulate(df, headers='keys'))
        return df

    def get_investment_summary(self):
        # p&l
        position_data = {
            'Symbol': [],
            'Description': [],
            'Currency': [],
            'Quantities': [],
            'Market Value': [],
            'Return (%)': [],
            'Portfolio (%)': []
        }
        total_market_value = self.get_usd_total_mv()
        total_costs = 0
        positions = self.qtrade.get_account_positions(self.acctNum)
        for position in positions:
            # handle daily execution for closeQuantity
            if position['openQuantity'] != 0:
                symbol = position['symbol']
                description = self.qtrade.ticker_information(
                    symbol)['description']
                qty = position['openQuantity']
                cmv = position['currentMarketValue']
                currency = self.qtrade.ticker_information(symbol)['currency']
                cost = position['totalCost']
                change = round(100 * (cmv - cost) / cost, 2)

                total_costs = total_costs + cost
                position_data['Symbol'].append(symbol)
                position_data['Description'].append(description)
                position_data['Currency'].append(currency)
                position_data['Quantities'].append(qty)
                position_data['Market Value'].append(cmv)
                position_data['Return (%)'].append(change)
                position_data['Portfolio (%)'].append(
                    round(100 * (cmv / total_market_value), 2))

        portfolio = pd.DataFrame(position_data)
        portfolio.set_index('Symbol', inplace=True)
        #portfolio.index.name = None
        #print(tabulate(portfolio))
        return portfolio

    def get_historical_dividend_income(self, period):
        # identify the first date for creation
        endDate = dt.date.today().strftime("%Y-%m-%d")
        startDate = dt.date.today() - dt.timedelta(days=period)
        dtrange = pd.date_range(startDate, endDate, freq='d')
        months = pd.Series(dtrange.month)
        starts, ends = months.ne(months.shift(1)), months.ne(months.shift(-1))
        startEndDates = pd.DataFrame({
            'month_starting_date':
            dtrange[starts].strftime('%Y-%m-%d'),
            'month_ending_date':
            dtrange[ends].strftime('%Y-%m-%d')
        })
        dateList = startEndDates.values.tolist()

        output = {}
        total_div_earned = 0

        for date in dateList:
            start = date[0]
            end = date[1]
            activities = self.qtrade.get_account_activities(
                self.acctNum, start, end)
            monthly_div = 0
            for activity in activities:
                if activity['type'] == 'Dividends':
                    monthly_div = monthly_div + activity['netAmount']
            output[dt.datetime.strptime(
                start, "%Y-%m-%d").strftime("%Y-%m")] = monthly_div
            total_div_earned = total_div_earned + monthly_div

        monthly_div_df = pd.DataFrame.from_dict(
            output, orient='index', columns=['Monthly_Dividend_Income'])

        return monthly_div_df

    def _monthly_return(self, assets):
        monthly_prices = pd.DataFrame()
        for asset in assets:
            monthly_prices[asset] = yf.download(asset,
                                                start=dt.datetime(2018, 1, 1),
                                                end=dt.datetime.today(),
                                                interval='1mo',
                                                progress=False)['Adj Close']

        monthly_returns = monthly_prices.pct_change()
        monthly_returns.dropna(inplace=True)

        return monthly_returns

    def _cumulative_returns(self, assets, weights):
        prices = pd.DataFrame()

        for symbol in assets:
            prices[symbol] = yf.download(symbol,
                                         start=dt.datetime(2018, 1, 1),
                                         end=dt.datetime.today(),
                                         interval='1mo',
                                         progress=False)['Adj Close']

        prices.dropna(inplace=True)
        monthly_returns = prices.pct_change()
        monthly_returns = monthly_returns.shift(-1)
        monthly_returns['port'] = monthly_returns.dot(weights)
        cum_returns = np.exp(np.log1p(monthly_returns['port']).cumsum())[:-1]
        return cum_returns

    def _cagr(self, assets, weights):
        cum_ret = self._cumulative_returns(assets, weights)
        first_value = cum_ret[0]
        last_value = cum_ret[-1]
        years = len(cum_ret.index) / 12
        cagr = (last_value / first_value)**(1 / years) - 1
        return cagr

    def _mdd(self, assets, weights):
        cum_ret = self._cumulative_returns(assets, weights)
        previous_peaks = cum_ret.cummax()
        drawdown = (cum_ret - previous_peaks) / previous_peaks
        port_mdd = drawdown.min()
        return port_mdd

    def calculate_portfolio_performance(self):

        BM_assets = ['SPY', 'IEF']
        BM_weights = np.array([0.6, 0.4])

        BM_cagr = round(self._cagr(BM_assets, BM_weights) * 100, 2)
        BM_mdd = round(self._mdd(BM_assets, BM_weights) * 100, 2)

        investments = self.get_investment_summary()

        port_assets = list(investments.index)
        port_weights = np.array(list(investments['Portfolio (%)'] / 100))
        port_cagr = round(self._cagr(port_assets, port_weights) * 100, 2)
        port_mdd = round(self._mdd(port_assets, port_weights) * 100, 2)

        stat = {
            'Portfolio': ['BenchMark', 'CurrentPortfolio'],
            'CAGR (%)': [BM_cagr, port_cagr],
            'MDD (%)': [BM_mdd, port_mdd]
        }

        stat_df = pd.DataFrame(stat)
        stat_df.set_index('Portfolio', inplace=True)

        return stat_df

    def strategy_allocation(self):
        # cash allocation
        # total equity - cash = allocatable amount
        total_equity = self.get_usd_total_equity()
        total_mv = self.get_usd_total_mv()
        curr_cash = total_equity - total_mv
        print(curr_cash)
        target_cash = total_equity * (self.cash_rate / 100)

        if target_cash < curr_cash:
            # invest more from curr_cash
            invest_amount = curr_cash - target_cash
            print("invest more from curr_cash")

        else:
            # sell some from investment to increase curr_cash
            new_market_value = total_mv - (target_cash - curr_cash)
            print("sell some from investment to increase curr_cash")
Esempio n. 5
0
# Set up console logging:
LOG = logging.getLogger(__name__)
LOG.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
    '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
LOG.addHandler(ch)

# Create Questrade object either through new token (one time use)
# provided by Questrade, or the access_token.yaml.
try:
    qtrade = Questrade(access_code=os.getenv("qtrade_token"))
    aapl, amzn = qtrade.ticker_information(['AAPL', 'AMZN'])
    LOG.info("Authorized via qtrade_token")
except:
    try:
        qtrade = Questrade(token_yaml="access_token.yml")
        aapl, amzn = qtrade.ticker_information(['AAPL', 'AMZN'])
        LOG.info("Authorized via access_token")
    except:
        try:
            qtrade.refresh_access_token(
                from_yaml=True
            )  # When Qtrade refreshes token, it kills the old credentials
            aapl, amzn = qtrade.ticker_information(['AAPL', 'AMZN'])
            LOG.info("Authorized via refreshed access_token")
        except:
            LOG.error("Authorized was unsuccessful")