Esempio n. 1
0
def shaped_like_a_side(side_data):
  """Determines if the given side data is actually shaped like a side.

  Sides may be flat, out-shaped or in-shaped (the latter two being
  indistinguishable when looking at just a single shape).

  Arguments:
    side_data: a list of (x, y) tuples

  Returns a boolean.
  """
  fixtures_path = 'quandry/fixtures/'
  piece_six_path = os.path.join(fixtures_path, 'piece-six.json')
  with open(piece_six_path) as piece_six_file:
    canonical_out_side = json.loads(piece_six_file.read())['sides'][1]
  out_score = util.hausdorff(side_data, canonical_out_side)
  print 'out score: %s' % out_score
  if out_score < 10:
    #return True
    pass

  piece_three_path = os.path.join(fixtures_path, 'piece-three.json')
  with open(piece_three_path) as piece_three_file:
    canonical_flat_side = json.loads(piece_three_file.read())['sides'][0]
  flat_score = util.hausdorff(side_data, canonical_flat_side)
  print 'flat score: %s' % flat_score
  if flat_score < 10:
    #return True
    pass
Esempio n. 2
0
for filepath in piece_data:
  for index, side in enumerate(piece_data[filepath]['sides']):
    key = '%s+%s' % (filepath, index)
    sides[key] = {
      'name': key,
      'type': piece_data[filepath]['side_types'][index],
      'length': piece_data[filepath]['side_lengths'][index],
      'outline': piece_data[filepath]['sides'][index],
    }
ins = [sides[k] for k in sides if sides[k]['type'] == 'in']
outs = [sides[k] for k in sides if sides[k]['type'] == 'out']


# Compare ins and outs.
for in_side in ins:
  print 'analyzing "%s"..' % in_side['name']
  side_length_ratios = []
  for out_side in outs:
    if in_side['name'].split('+')[0] == out_side['name'].split('+')[0]:
      continue
    diff = util.percent_diff(in_side['length'], out_side['length'])
    side_length_ratios.append((out_side['name'], diff))
  hausdorff_scores = []
  for name, ratio in sorted(side_length_ratios, key=lambda v: v[1]):
    if ratio > 10:
      continue
    h_score = util.hausdorff(in_side['outline'], sides[name]['outline'])
    hausdorff_scores.append((name, h_score))
  for h in sorted(hausdorff_scores, key=lambda v: v[1]):
    print '%10s -> %0.2f' % (h[0].split('/')[1], h[1])