Esempio n. 1
0
    def cal_summary_table(fund_name, fund_code, fund_type, date_array,
                          benchmark_array):
        """
        主动股票型基金表现总结
        分区间计算 基金表现(累计收益 年化收益 年化波动 最大回撤 收益波动比)
        分区间计算 分基准 计算基准表现(累计收益 年化收益 年化波动 最大回撤 收益波动比)
        """

        # 分类读取基金数据
        fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)
        performance_table = pd.DataFrame([], columns=date_array[:, 0])
        fs = FinancialSeries(pd.DataFrame(fund_data),
                             pd.DataFrame([], columns=['nav']))

        for i_date in range(date_array.shape[0]):

            label = date_array[i_date, 0]
            bd = Date().change_to_str(date_array[i_date, 1])
            ed = Date().change_to_str(date_array[i_date, 2])
            performance_table.ix[fund_name + "累计收益",
                                 label] = fs.get_interval_return(bd, ed)
            performance_table.ix[fund_name + "年化收益",
                                 label] = fs.get_interval_return_annual(
                                     bd, ed)
            performance_table.ix[fund_name + "年化波动",
                                 label] = fs.get_interval_std_annual(bd, ed)
            performance_table.ix[fund_name + "最大回撤",
                                 label] = fs.get_interval_max_drawdown(bd, ed)
            performance_table.ix[fund_name + "收益波动比",
                                 label] = fs.get_interval_return_std_ratio(
                                     bd, ed)

        for i_benchmark in range(benchmark_array.shape[0]):

            benchmark_name = benchmark_array[i_benchmark, 0]
            benchmark_code = benchmark_array[i_benchmark, 1]
            benchmark_data = Index().get_index_factor(benchmark_code,
                                                      attr=["CLOSE"])
            fs = FinancialSeries(pd.DataFrame(benchmark_data),
                                 pd.DataFrame([], columns=['nav']))

            for i_date in range(date_array.shape[0]):
                label = date_array[i_date, 0]
                bd = Date().change_to_str(date_array[i_date, 1])
                ed = Date().change_to_str(date_array[i_date, 2])

                performance_table.loc[benchmark_name + "累计收益",
                                      label] = fs.get_interval_return(bd, ed)
                performance_table.loc[benchmark_name + "年化收益",
                                      label] = fs.get_interval_return_annual(
                                          bd, ed)
                performance_table.loc[benchmark_name + "年化波动",
                                      label] = fs.get_interval_std_annual(
                                          bd, ed)
                performance_table.loc[benchmark_name + "最大回撤",
                                      label] = fs.get_interval_max_drawdown(
                                          bd, ed)

        return performance_table
Esempio n. 2
0
    def cal_summary_table_enhanced_fund(fund_name,
                                        fund_code,
                                        fund_type,
                                        date_array,
                                        benchmark_code,
                                        benchmark_name,
                                        benchmark_ratio=1.0):
        """
        指数型基金表现总结
        分区间计算 基金和基准表现(累计收益 年化收益 超额收益 跟踪误差 信息比率 超额收益最大回撤等)
        """

        # 分类读取基金数据
        fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)
        benchmark_data = Index().get_index_factor(benchmark_code,
                                                  attr=["CLOSE"])

        enhanced_table = pd.DataFrame([], columns=date_array[:, 0])
        fs = FinancialSeries(pd.DataFrame(fund_data),
                             pd.DataFrame(benchmark_data), benchmark_ratio)

        for i_date in range(date_array.shape[0]):
            label = date_array[i_date, 0]
            bd = Date().change_to_str(date_array[i_date, 1])
            ed = Date().change_to_str(date_array[i_date, 2])

            enhanced_table.loc[fund_name + "累计收益",
                               label] = fs.get_interval_return(bd, ed)
            enhanced_table.loc[benchmark_name + "累计收益",
                               label] = fs.get_interval_return_benchmark(
                                   bd, ed)
            bench_return = fs.get_interval_return_benchmark_ratio(bd, ed)
            enhanced_table.loc[benchmark_name + "*%s累计收益" % benchmark_ratio,
                               label] = bench_return
            enhanced_table.loc[fund_name + "超额收益",
                               label] = fs.get_interval_excess_return(bd, ed)
            enhanced_table.loc[fund_name + "超额年化收益",
                               label] = fs.get_interval_excess_return_annual(
                                   bd, ed)
            enhanced_table.loc[fund_name + "跟踪误差",
                               label] = fs.get_interval_tracking_error(bd, ed)
            enhanced_table.loc[fund_name + "信息比率",
                               label] = fs.get_interval_mean_ir(bd, ed)
            enhanced_table.loc[
                fund_name + "超额收益最大回撤",
                label] = fs.get_interval_excess_return_max_drawdown(bd, ed)
            enhanced_table.loc[fund_name + "标准差",
                               label] = fs.get_interval_std_annual(bd, ed)
            enhanced_table.loc[fund_name + "夏普比率",
                               label] = fs.get_interval_shape_ratio(
                                   bd, ed, 0.03)
            enhanced_table.loc[fund_name + "最大回撤",
                               label] = fs.get_interval_max_drawdown(bd, ed)
            enhanced_table.loc[fund_name + "年化收益",
                               label] = fs.get_interval_return_annual(bd, ed)
            enhanced_table.loc[
                benchmark_name + "年化收益",
                label] = fs.get_interval_return_annual_benchmark(bd, ed)

        return enhanced_table
Esempio n. 3
0
    def cal_summary_period(self, beg_date=None, end_date=None):
        """
        计算组合在区间内 收益率、波动率等表现情况
        并画图并存储图片
        """

        self.get_port_return()
        if beg_date is None:
            beg_date = self.port_return.index[0]
        if end_date is None:
            end_date = self.port_return.index[-1]

        fs = FinancialSeries(
            pd.DataFrame(self.port_return["CumPortReturn"] + 1.0),
            pd.DataFrame(self.port_return["CumIndexReturn"] + 1.0))

        port_return = self.port_return.loc[beg_date:end_date, :]
        result = pd.DataFrame([])
        beg_date = port_return.index[0]
        end_date = port_return.index[-1]
        label = str(beg_date)[0:4] + '年'
        result.loc[label, '开始时间'] = beg_date
        result.loc[label, '结束时间'] = end_date
        result.loc[label, "收益率"] = fs.get_interval_return(beg_date, end_date)
        result.loc[label, "年化收益率"] = fs.get_interval_return_annual(
            beg_date, end_date)
        result.loc[label,
                   "年化波动率"] = fs.get_interval_std_annual(beg_date, end_date)
        result.loc[label, "年化跟踪误差"] = fs.get_interval_tracking_error(
            beg_date, end_date)
        result.loc[label,
                   "最大回撤率"] = fs.get_interval_max_drawdown(beg_date, end_date)
        result.loc[label, "超额收益率"] = fs.get_interval_excess_return(
            beg_date, end_date)
        result.loc[label, "年化超额收益率"] = fs.get_interval_excess_return_annual(
            beg_date, end_date)
        result.loc[label,
                   "超额收益率最大回撤"] = fs.get_interval_excess_return_max_drawdown(
                       beg_date, end_date)
        result.loc[label, "基准收益率"] = fs.get_interval_return_benchmark(
            beg_date, end_date)
        result.loc[label, "基准年化收益率"] = fs.get_interval_return_annual_benchmark(
            beg_date, end_date)
        result.loc[label, "基准年化波动率"] = fs.get_interval_std_annual_benchmark(
            beg_date, end_date)
        result.loc[label, "基准最大回撤率"] = fs.get_interval_max_drawdown_benchmark(
            beg_date, end_date)
        self.plot_port_return_period(beg_date, end_date)
        return result.T