Esempio n. 1
0
 def setUp(self):
     self.p = BlackScholesPriceProcess()
Esempio n. 2
0
class TestSimulateBlackScholesPriceProcess(unittest.TestCase):
    def setUp(self):
        self.p = BlackScholesPriceProcess()

    def test_simulate_future_prices_no_requirements(self):
        prices = list(
            self.p.simulate_future_prices(
                observation_date=datetime.datetime(2011, 1, 1),
                requirements=[],
                path_count=2,
                calibration_params={
                    'market': ['#1'],
                    'sigma': [0.5],
                    'curve': {
                        '#1': (('2011-1-1', 10), )
                    },
                },
            ))
        self.assertEqual(list(prices), [])

    def test_simulate_future_prices_one_market_zero_volatility(self):
        prices = list(
            self.p.simulate_future_prices(
                requirements=[
                    ('#1', datetime.datetime(2011, 1,
                                             1), datetime.datetime(2011, 1,
                                                                   1)),
                    ('#1', datetime.datetime(2011, 1,
                                             2), datetime.datetime(2011, 1,
                                                                   2)),
                ],
                observation_date=datetime.datetime(2011, 1, 1),
                path_count=2,
                calibration_params={
                    'market': ['#1'],
                    'sigma': [0.0],
                    'curve': {
                        '#1': (('2011-1-1', 10), )
                    },
                },
            ))
        prices = [(p[0], p[1], p[2], p[3].mean())
                  for p in prices]  # For scipy.
        self.assertEqual(prices, [
            ('#1', datetime.datetime(2011, 1, 1), datetime.datetime(
                2011, 1, 1), scipy.array([10., 10.]).mean()),
            ('#1', datetime.datetime(2011, 1, 2), datetime.datetime(
                2011, 1, 2), scipy.array([10., 10.]).mean()),
        ])

    def test_simulate_future_prices_one_market_high_volatility(self):
        prices = list(
            self.p.simulate_future_prices(
                requirements=[
                    ('#1', datetime.datetime(2011, 1,
                                             1), datetime.datetime(2011, 1,
                                                                   1)),
                    ('#1', datetime.datetime(2011, 1,
                                             2), datetime.datetime(2011, 1,
                                                                   2)),
                ],
                observation_date=datetime.datetime(2011, 1, 1),
                path_count=1000,
                calibration_params={
                    'market': ['#1'],
                    'sigma': [0.5],
                    'curve': {
                        '#1': (('2011-1-1', 10), )
                    },
                },
            ))
        prices = [p[3].mean() for p in prices[1:]]  # For scipy.
        expected_prices = [10]
        for price, expected_price in zip(prices, expected_prices):
            self.assertNotEqual(price, expected_price)
            self.assertAlmostEqual(price, expected_price, places=0)

    def test_simulate_future_prices_two_markets_zero_volatility(self):
        prices = list(
            self.p.simulate_future_prices(requirements=[
                ('#1', datetime.datetime(2011, 1,
                                         1), datetime.datetime(2011, 1, 1)),
                ('#1', datetime.datetime(2011, 1,
                                         2), datetime.datetime(2011, 1, 2)),
                ('#2', datetime.datetime(2011, 1,
                                         1), datetime.datetime(2011, 1, 1)),
                ('#2', datetime.datetime(2011, 1,
                                         2), datetime.datetime(2011, 1, 2)),
            ],
                                          observation_date=datetime.datetime(
                                              2011, 1, 1),
                                          path_count=200000,
                                          calibration_params={
                                              'market': ['#1', '#2'],
                                              'sigma': [0.0, 0.0],
                                              'curve': {
                                                  '#1': (('2011-1-1', 10), ),
                                                  '#2': (('2011-1-1', 20), )
                                              },
                                              'rho': [[1, 0], [0, 1]]
                                          }))
        prices = [(p[0], p[1], p[2], p[3].mean())
                  for p in prices]  # For scipy.
        self.assertEqual(prices, [
            ('#1', datetime.datetime(2011, 1, 1), datetime.datetime(
                2011, 1, 1), scipy.array([10., 10.]).mean()),
            ('#1', datetime.datetime(2011, 1, 2), datetime.datetime(
                2011, 1, 2), scipy.array([10., 10.]).mean()),
            ('#2', datetime.datetime(2011, 1, 1), datetime.datetime(
                2011, 1, 1), scipy.array([20., 20.]).mean()),
            ('#2', datetime.datetime(2011, 1, 2), datetime.datetime(
                2011, 1, 2), scipy.array([20., 20.]).mean()),
        ])

    def test_simulate_future_prices_two_markets_high_volatility_zero_correlation(
            self):
        prices = list(
            self.p.simulate_future_prices(
                requirements=[
                    ('#1', datetime.datetime(2011, 1,
                                             1), datetime.datetime(2011, 1,
                                                                   1)),
                    ('#1', datetime.datetime(2011, 1,
                                             2), datetime.datetime(2011, 1,
                                                                   2)),
                    ('#2', datetime.datetime(2011, 1,
                                             1), datetime.datetime(2011, 1,
                                                                   1)),
                    ('#2', datetime.datetime(2011, 1,
                                             2), datetime.datetime(2011, 1,
                                                                   2)),
                ],
                observation_date=datetime.datetime(2011, 1, 1),
                path_count=1000,
                calibration_params={
                    'market': ['#1', '#2'],
                    'sigma': [0.5, 0.5],
                    'curve': {
                        '#1': (('2011-1-1', 10), ),
                        '#2': (('2011-1-1', 20), )
                    },
                    'rho': [[1, 0], [0, 1]]
                },
            ))
        prices = [p[3].mean() for p in prices]  # For scipy.
        expected_prices = [10, 10, 20, 20]
        for price, expected_price in zip(prices, expected_prices):
            self.assertAlmostEqual(price, expected_price, places=0)

    def test_simulate_future_prices_two_markets_high_volatility_positive_correlation(
            self):
        prices = list(
            self.p.simulate_future_prices(
                requirements=[
                    ('#1', datetime.datetime(2011, 1,
                                             1), datetime.datetime(2011, 1,
                                                                   1)),
                    ('#1', datetime.datetime(2011, 1,
                                             2), datetime.datetime(2011, 1,
                                                                   2)),
                    ('#2', datetime.datetime(2011, 1,
                                             1), datetime.datetime(2011, 1,
                                                                   1)),
                    ('#2', datetime.datetime(2011, 1,
                                             2), datetime.datetime(2011, 1,
                                                                   2)),
                ],
                observation_date=datetime.datetime(2011, 1, 1),
                path_count=1000,
                calibration_params={
                    'market': ['#1', '#2'],
                    'sigma': [0.5, 0.5],
                    'curve': {
                        '#1': (('2011-1-1', 10), ),
                        '#2': (('2011-1-1', 20), )
                    },
                    'rho': [[1, 0.5], [0.5, 1]]
                },
            ))
        assert len(prices)
        prices = [p[3].mean() for p in prices]  # For scipy.
        expected_prices = [10, 10, 20, 20]
        for price, expected_price in zip(prices, expected_prices):
            self.assertAlmostEqual(price, expected_price, places=0)

    def test_simulate_future_prices_from_longer_curve(self):
        prices = list(
            self.p.simulate_future_prices(
                requirements=[
                    ('#1', datetime.datetime(2011, 1,
                                             1), datetime.datetime(2011, 1,
                                                                   1)),
                    ('#1', datetime.datetime(2011, 1,
                                             2), datetime.datetime(2011, 1,
                                                                   2)),
                    ('#2', datetime.datetime(2011, 1,
                                             1), datetime.datetime(2011, 1,
                                                                   1)),
                    ('#2', datetime.datetime(2011, 1,
                                             2), datetime.datetime(2011, 1,
                                                                   2)),
                ],
                observation_date=datetime.datetime(2011, 1, 1),
                path_count=1000,
                calibration_params={
                    'market': ['#1', '#2'],
                    'sigma': [0.5, 0.5],
                    'curve': {
                        '#1': (('2011-1-1', 10), ('2011-1-2', 15)),
                        '#2': (('2011-1-1', 20), ('2011-1-2', 25))
                    },
                    'rho': [[1, 0.5], [0.5, 1]]
                },
            ))
        expected_prices = [10, 15, 20, 25]
        prices = [p[3].mean() for p in prices]  # For scipy.

        for price, expected_price in zip(prices, expected_prices):
            self.assertAlmostEqual(price, expected_price, places=0)
Esempio n. 3
0
class TestBlackScholesPriceProcess(unittest.TestCase):

    def setUp(self):
        self.p = BlackScholesPriceProcess()

    def test_simulate_future_prices_no_market_names_no_fixing_dates(self):
        prices = list(self.p.simulate_future_prices(
            market_names=[],
            fixing_dates=[],
            observation_date=datetime.date(2011, 1, 1),
            path_count=2, calibration_params={},
        ))
        self.assertEqual(prices, [])

    def test_simulate_future_prices_no_fixing_dates(self):
        prices = list(self.p.simulate_future_prices(
            market_names=['#1'],
            fixing_dates=[],
            observation_date=datetime.date(2011, 1, 1),
            path_count=2, calibration_params={'#1-LAST-PRICE': 10, '#1-ACTUAL-HISTORICAL-VOLATILITY': 50},
        ))
        prices = [(p[0], p[1], p[2].all()) for p in prices]  # For numpy.
        self.assertEqual(prices, [('#1', datetime.date(2011, 1, 1), numpy.array([ 10.,  10.]).all())])

    def test_simulate_future_prices_no_markets(self):
        prices = list(self.p.simulate_future_prices(
            market_names=[],
            fixing_dates=[datetime.date(2011, 1, 2)],
            observation_date=datetime.date(2011, 1, 1),
            path_count=2, calibration_params={},
        ))
        self.assertEqual(prices, [])

    def test_simulate_future_prices_one_market_zero_volatility(self):
        prices = list(self.p.simulate_future_prices(
            market_names=['#1'],
            fixing_dates=[datetime.date(2011, 1, 2)],
            observation_date=datetime.date(2011, 1, 1),
            path_count=2, calibration_params={
                '#1-LAST-PRICE': 10,
                '#1-ACTUAL-HISTORICAL-VOLATILITY': 0,
            },
        ))
        prices = [(p[0], p[1], p[2].mean()) for p in prices]  # For numpy.
        self.assertEqual(prices, [
            ('#1', datetime.date(2011, 1, 1), numpy.array([ 10.,  10.]).mean()),
            ('#1', datetime.date(2011, 1, 2), numpy.array([ 10.,  10.]).mean()),
        ])

    def test_simulate_future_prices_one_market_high_volatility(self):
        prices = list(self.p.simulate_future_prices(
            market_names=['#1'],
            fixing_dates=[datetime.date(2012, 1, 1)],
            observation_date=datetime.date(2011, 1, 1),
            path_count=1000, calibration_params={
                '#1-LAST-PRICE': 10,
                '#1-ACTUAL-HISTORICAL-VOLATILITY': 50,
            },
        ))
        prices = [p[2].mean() for p in prices[1:]]  # For numpy.
        expected_prices = [10]
        for price, expected_price in zip(prices, expected_prices):
            self.assertNotEqual(price, expected_price)
            self.assertAlmostEqual(price, expected_price, places=0)

    def test_simulate_future_prices_two_markets_zero_volatility(self):
        prices = list(self.p.simulate_future_prices(
            market_names=['#1', '#2'],
            fixing_dates=[datetime.date(2011, 1, 2)],
            observation_date=datetime.date(2011, 1, 1),
            path_count=200000, calibration_params={
                '#1-LAST-PRICE': 10,
                '#1-ACTUAL-HISTORICAL-VOLATILITY': 0,
                '#2-LAST-PRICE': 20,
                '#2-ACTUAL-HISTORICAL-VOLATILITY': 0,
                '#1-#2-CORRELATION': 0,
            },
        ))
        prices = [(p[0], p[1], p[2].mean()) for p in prices]  # For numpy.
        self.assertEqual(prices, [
            ('#1', datetime.date(2011, 1, 1), numpy.array([ 10.,  10.]).mean()),
            ('#1', datetime.date(2011, 1, 2), numpy.array([ 10.,  10.]).mean()),
            ('#2', datetime.date(2011, 1, 1), numpy.array([ 20.,  20.]).mean()),
            ('#2', datetime.date(2011, 1, 2), numpy.array([ 20.,  20.]).mean()),
        ])

    def test_simulate_future_prices_two_markets_high_volatility_zero_correlation(self):
        prices = list(self.p.simulate_future_prices(
            market_names=['#1', '#2'],
            fixing_dates=[datetime.date(2012, 1, 1)],
            observation_date=datetime.date(2011, 1, 1),
            path_count=1000, calibration_params={
                '#1-LAST-PRICE': 10,
                '#1-ACTUAL-HISTORICAL-VOLATILITY': 50,
                '#2-LAST-PRICE': 20,
                '#2-ACTUAL-HISTORICAL-VOLATILITY': 50,
                '#1-#2-CORRELATION': 0,
            },
        ))
        prices = [p[2].mean() for p in prices]  # For numpy.
        expected_prices = [10, 10, 20, 20]
        for price, expected_price in zip(prices, expected_prices):
            self.assertAlmostEqual(price, expected_price, places=0)

    def test_simulate_future_prices_two_markets_high_volatility_positive_correlation(self):
        prices = list(self.p.simulate_future_prices(
            market_names=['#1', '#2'],
            fixing_dates=[datetime.date(2012, 1, 1)],
            observation_date=datetime.date(2011, 1, 1),
            path_count=1000, calibration_params={
                '#1-LAST-PRICE': 10,
                '#1-ACTUAL-HISTORICAL-VOLATILITY': 50,
                '#2-LAST-PRICE': 20,
                '#2-ACTUAL-HISTORICAL-VOLATILITY': 50,
                '#1-#2-CORRELATION': 0.5,
            },
        ))
        prices = [p[2].mean() for p in prices]  # For numpy.
        expected_prices = [10, 10, 20, 20]
        for price, expected_price in zip(prices, expected_prices):
            self.assertAlmostEqual(price, expected_price, places=0)
Esempio n. 4
0
 def setUp(self):
     self.p = BlackScholesPriceProcess()
Esempio n. 5
0
class TestBlackScholesPriceProcess(unittest.TestCase):
    def setUp(self):
        self.p = BlackScholesPriceProcess()

    def test_simulate_future_prices_no_market_names_no_fixing_dates(self):
        prices = list(
            self.p.simulate_future_prices(
                market_names=[],
                fixing_dates=[],
                observation_date=datetime.date(2011, 1, 1),
                path_count=2,
                calibration_params={},
            ))
        self.assertEqual(prices, [])

    def test_simulate_future_prices_no_fixing_dates(self):
        prices = list(
            self.p.simulate_future_prices(
                market_names=['#1'],
                fixing_dates=[],
                observation_date=datetime.date(2011, 1, 1),
                path_count=2,
                calibration_params={
                    '#1-LAST-PRICE': 10,
                    '#1-ACTUAL-HISTORICAL-VOLATILITY': 50
                },
            ))
        prices = [(p[0], p[1], p[2].all()) for p in prices]  # For numpy.
        self.assertEqual(
            prices,
            [('#1', datetime.date(2011, 1, 1), numpy.array([10., 10.]).all())])

    def test_simulate_future_prices_no_markets(self):
        prices = list(
            self.p.simulate_future_prices(
                market_names=[],
                fixing_dates=[datetime.date(2011, 1, 2)],
                observation_date=datetime.date(2011, 1, 1),
                path_count=2,
                calibration_params={},
            ))
        self.assertEqual(prices, [])

    def test_simulate_future_prices_one_market_zero_volatility(self):
        prices = list(
            self.p.simulate_future_prices(
                market_names=['#1'],
                fixing_dates=[datetime.date(2011, 1, 2)],
                observation_date=datetime.date(2011, 1, 1),
                path_count=2,
                calibration_params={
                    '#1-LAST-PRICE': 10,
                    '#1-ACTUAL-HISTORICAL-VOLATILITY': 0,
                },
            ))
        prices = [(p[0], p[1], p[2].mean()) for p in prices]  # For numpy.
        self.assertEqual(prices, [
            ('#1', datetime.date(2011, 1, 1), numpy.array([10., 10.]).mean()),
            ('#1', datetime.date(2011, 1, 2), numpy.array([10., 10.]).mean()),
        ])

    def test_simulate_future_prices_one_market_high_volatility(self):
        prices = list(
            self.p.simulate_future_prices(
                market_names=['#1'],
                fixing_dates=[datetime.date(2012, 1, 1)],
                observation_date=datetime.date(2011, 1, 1),
                path_count=1000,
                calibration_params={
                    '#1-LAST-PRICE': 10,
                    '#1-ACTUAL-HISTORICAL-VOLATILITY': 50,
                },
            ))
        prices = [p[2].mean() for p in prices[1:]]  # For numpy.
        expected_prices = [10]
        for price, expected_price in zip(prices, expected_prices):
            self.assertNotEqual(price, expected_price)
            self.assertAlmostEqual(price, expected_price, places=0)

    def test_simulate_future_prices_two_markets_zero_volatility(self):
        prices = list(
            self.p.simulate_future_prices(
                market_names=['#1', '#2'],
                fixing_dates=[datetime.date(2011, 1, 2)],
                observation_date=datetime.date(2011, 1, 1),
                path_count=200000,
                calibration_params={
                    '#1-LAST-PRICE': 10,
                    '#1-ACTUAL-HISTORICAL-VOLATILITY': 0,
                    '#2-LAST-PRICE': 20,
                    '#2-ACTUAL-HISTORICAL-VOLATILITY': 0,
                    '#1-#2-CORRELATION': 0,
                },
            ))
        prices = [(p[0], p[1], p[2].mean()) for p in prices]  # For numpy.
        self.assertEqual(prices, [
            ('#1', datetime.date(2011, 1, 1), numpy.array([10., 10.]).mean()),
            ('#1', datetime.date(2011, 1, 2), numpy.array([10., 10.]).mean()),
            ('#2', datetime.date(2011, 1, 1), numpy.array([20., 20.]).mean()),
            ('#2', datetime.date(2011, 1, 2), numpy.array([20., 20.]).mean()),
        ])

    def test_simulate_future_prices_two_markets_high_volatility_zero_correlation(
            self):
        prices = list(
            self.p.simulate_future_prices(
                market_names=['#1', '#2'],
                fixing_dates=[datetime.date(2012, 1, 1)],
                observation_date=datetime.date(2011, 1, 1),
                path_count=1000,
                calibration_params={
                    '#1-LAST-PRICE': 10,
                    '#1-ACTUAL-HISTORICAL-VOLATILITY': 50,
                    '#2-LAST-PRICE': 20,
                    '#2-ACTUAL-HISTORICAL-VOLATILITY': 50,
                    '#1-#2-CORRELATION': 0,
                },
            ))
        prices = [p[2].mean() for p in prices]  # For numpy.
        expected_prices = [10, 10, 20, 20]
        for price, expected_price in zip(prices, expected_prices):
            self.assertAlmostEqual(price, expected_price, places=0)

    def test_simulate_future_prices_two_markets_high_volatility_positive_correlation(
            self):
        prices = list(
            self.p.simulate_future_prices(
                market_names=['#1', '#2'],
                fixing_dates=[datetime.date(2012, 1, 1)],
                observation_date=datetime.date(2011, 1, 1),
                path_count=1000,
                calibration_params={
                    '#1-LAST-PRICE': 10,
                    '#1-ACTUAL-HISTORICAL-VOLATILITY': 50,
                    '#2-LAST-PRICE': 20,
                    '#2-ACTUAL-HISTORICAL-VOLATILITY': 50,
                    '#1-#2-CORRELATION': 0.5,
                },
            ))
        prices = [p[2].mean() for p in prices]  # For numpy.
        expected_prices = [10, 10, 20, 20]
        for price, expected_price in zip(prices, expected_prices):
            self.assertAlmostEqual(price, expected_price, places=0)