def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        qname = kwargs['qname']
        in_tensors = qrec.prepare_inputs(params, in_tensors, ktype=qname)
        if qrec:
            in_q = qrec.in_qs[0]
            out_q = qrec.out_qs[0]
            float_conversion = in_q.is_floating or out_q.is_floating
            bit_conversion = in_q.bits != out_q.bits
            if not float_conversion:
                same_sign = in_q.signed == out_q.signed
                if in_q.bits > out_q.bits:
                    bit_diff = in_q.bits - out_q.bits
                    same_scale = np.allclose(in_q.scale *
                                             np.power(2, bit_diff),
                                             out_q.scale,
                                             atol=0.0001)
                    same_zeropoint = np.all(
                        in_q.zero_point >> bit_diff == out_q.zero_point)
                elif out_q.bits > in_q.bits:
                    bit_diff = out_q.bits - in_q.bits
                    same_scale = np.allclose(out_q.scale *
                                             np.power(2, bit_diff),
                                             in_q.scale,
                                             atol=0.0001)
                    same_zeropoint = np.all(
                        in_q.zero_point == out_q.zero_point >> bit_diff)
                else:
                    same_scale = np.allclose(out_q.scale,
                                             in_q.scale,
                                             atol=0.0001)
                    same_zeropoint = np.all(
                        in_q.zero_point == out_q.zero_point)

                if same_scale and same_sign and bit_conversion and same_zeropoint:
                    if in_q.bits > out_q.bits:
                        if in_q.signed:
                            out_tensor = out_q.clip(
                                at_norm(in_tensors[0].astype(np.int32),
                                        in_q.bits - out_q.bits))
                        else:
                            out_tensor = out_q.clip(
                                at_norm(in_tensors[0].astype(np.uint32),
                                        in_q.bits - out_q.bits))
                    else:
                        out_tensor = in_tensors[0].astype(
                            out_q.dtype) << (out_q.bits - in_q.bits)
                    return qrec.get_outputs(params, [out_tensor], ktype=qname)
            # in all other conversions should be numerically equivalent to this (within 1 bit)
            out_tensor = qrec.out_qs[0].quantize_from(in_tensors[0],
                                                      qrec.in_qs[0])
        else:
            out_tensor = in_tensors[0]

        return qrec.get_outputs(params, [out_tensor], ktype=qname)
Esempio n. 2
0
    def execute(cls, params,
                in_tensors,
                qrec: QRec,
                **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensors = qrec.prepare_inputs(params, in_tensors, ktype="float")
        if len(params.in_dims) == 3:
            return qrec.get_outputs(params, [in_tensors[0] * in_tensors[1] * in_tensors[2]], ktype="float")
        return qrec.get_outputs(params, [in_tensors[0] * in_tensors[1]], ktype="float")
Esempio n. 3
0
 def execute(cls, params, in_tensors, qrec: QRec, **kwargs):
     in_tensor = qrec.prepare_inputs(params, in_tensors,
                                     ktype="symmetric")[0]
     compute_in_out_scale(qrec)
     neg_in = at_norm(in_tensor * leak_mult_gen_factor_q7(params), 7)
     in_tensor = in_tensor * (in_tensor > 0) + neg_in * (in_tensor < 0)
     scale_mul_biases_q = qrec.cache['scale_mul_biases_q']
     in_tensor = scale_mul_biases_q.apply_scales(in_tensor)
     if qrec.out_qs[0] != qrec.in_qs[0]:
         return qrec.get_outputs(
             params, [qrec.out_qs[0].reduce_from(in_tensor, qrec.in_qs[0])],
             ktype="symmetric")
     return qrec.get_outputs(params, [in_tensor], ktype="symmetric")
Esempio n. 4
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
        if params.upper_bound is None:
            return qrec.get_outputs(
                params, [np.maximum(in_tensor, params.lower_bound)],
                ktype="float")
        return qrec.get_outputs(params, [
            np.minimum(np.maximum(in_tensor, params.lower_bound),
                       params.upper_bound)
        ],
                                ktype="float")
Esempio n. 5
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        in_tensors = [
            in_tensor.astype(np.int32) for in_tensor in qrec.prepare_inputs(
                params, in_tensors, ktype="symmetric")
        ]
        if isinstance(params, MatMulTransposedParameters):
            mat1, mat2 = in_tensors[0], np.transpose(in_tensors[1], (1, 0))
        else:
            mat1, mat2 = in_tensors[0], in_tensors[1]

        mat2 = mat2.astype(np.int32) - qrec.in_qs[1].zero_point.astype(
            np.int32)

        if len(in_tensors) > 2:
            biases = in_tensors[2]
            if len(biases.shape) == 1:
                if biases.shape[0] == mat1.shape[0]:
                    biases = np.expand_dims(biases, -1)
        else:
            biases = 0

        out_tensor = np.matmul(mat1, mat2) + biases
        mul_biases_q = qrec.cache['mul_biases_q']
        scale_axis = None if len(mul_biases_q.scale) == 1 else 1
        out_tensor = mul_biases_q.apply_scales(out_tensor, scale_axis)

        return qrec.get_outputs(params, [out_tensor], ktype="symmetric")
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        qname = kwargs['qname']
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype=qname)[0]
        return qrec.get_outputs(
            params, [in_tensor * np.ones(params.shape, dtype=in_tensor.dtype)],
            ktype=qname)
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        qname = kwargs['qname']
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype=qname)[0]
        if params.transpose:
            in_tensor = np.transpose(in_tensor, params.transpose)
        return qrec.get_outputs(params, [in_tensor], ktype=qname)
Esempio n. 8
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
        return qrec.get_outputs(params, [1 / (1 + np.exp(-in_tensor))],
                                ktype="float")
Esempio n. 9
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        in_tensors = [
            in_tensor.astype(np.int32) for in_tensor in qrec.prepare_inputs(
                params, in_tensors, ktype="symmetric")
        ]

        if isinstance(params, MatMulTransposedParameters):
            mat1, mat2 = in_tensors[0], np.transpose(in_tensors[1], (1, 0))
        else:
            mat1, mat2 = in_tensors[0], in_tensors[1]

        if len(in_tensors) > 2:
            biases = in_tensors[2]
            if len(biases.shape) == 1:
                if biases.shape[0] == mat1.shape[0]:
                    biases = np.expand_dims(biases, -1)
        else:
            biases = 0

        # expect biases in in_q1 + in_q2
        q_calc = QType.Pow2(bits=32,
                            q=qrec.in_qs[0].q + qrec.in_qs[1].q,
                            signed=True)
        out_tensor = np.matmul(mat1, mat2) + biases
        out_tensor = qrec.out_qs[0].reduce_from(out_tensor, q_calc)

        return qrec.get_outputs(params, [out_tensor], ktype="symmetric")
Esempio n. 10
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
        in_dim, out_dim = params.in_dims[0], params.out_dims[0]
        in_tensor = in_tensor.transpose(
            in_dim.transpose_to_order(("h", "w", "c")))
        w_out = out_dim.w
        h_out = out_dim.h
        c_out = out_dim.c
        w_in = in_dim.w
        h_in = in_dim.h
        wstep = (w_in - 1) / (w_out - 1)
        hstep = (h_in - 1) / (h_out - 1)
        out_tensor = np.empty((h_out, w_out, c_out))
        for i in range(h_out):
            h_rounded = int(round(hstep * i))
            for j in range(w_out):
                w_rounded = int(round(wstep * j))
                out_tensor[i, j, :] = in_tensor[h_rounded, w_rounded, :]

        out_tensor = out_tensor.transpose(
            out_dim.transpose_from_order(("h", "w", "c")))
        return qrec.get_outputs(params, [out_tensor], ktype="float")
Esempio n. 11
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        in_tensor = qrec.prepare_inputs(params, in_tensors,
                                        ktype="symmetric")[0]

        relu_lb = qrec.in_qs[0].quantize(params.lower_bound)
        in_tensor = np.maximum(in_tensor, relu_lb)
        if params.upper_bound is not None:
            relu_ub = qrec.in_qs[0].quantize(params.upper_bound)
            in_tensor = np.minimum(in_tensor, relu_ub)

        if qrec.out_qs[0] != qrec.in_qs[0]:
            return qrec.get_outputs(
                params, [qrec.out_qs[0].reduce_from(in_tensor, qrec.in_qs[0])],
                ktype="symmetric")
        return qrec.get_outputs(params, [in_tensor], ktype="symmetric")
Esempio n. 12
0
 def execute(cls, params,
             in_tensors,
             qrec: QRec,
             **kwargs):
     if qrec is None:
         qrec = AllFloatQRec()
     details = kwargs.get('details')
     if details is not None:
         current_control = SymbolStats()
         Symbol.set_default_control(current_control)
         results = {}
     else:
         results = None
         current_control = None
     in_tensors = qrec.prepare_inputs(params, in_tensors, ktype="float")
     in_vars = {params.input_symbols[i]: in_tensor
                for i, in_tensor in enumerate(in_tensors)}
     func_col = qrec.cache.get('qfunc_col')
     if func_col is None:
         func_col = params.func_col
     out_vars = func_col(**in_vars,
                         calculate_ranges=current_control is not None,
                         track_results=results)
     out_tensors = [out_vars[out_sym_name]
                    for out_sym_name in params.output_symbols]
     if current_control:
         details.update(current_control.stats)
         details['results'] = results
     return qrec.get_outputs(params, out_tensors, ktype="float")
Esempio n. 13
0
    def execute(cls, params,
                in_tensors,
                qrec: QRec,
                **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensors = qrec.prepare_inputs(params, in_tensors, ktype="float")

        if isinstance(params, MatMulTransposedParameters):
            mat1, mat2 = in_tensors[0], np.transpose(in_tensors[1], (1, 0))
        else:
            mat1, mat2 = in_tensors[0], in_tensors[1]

        if len(in_tensors) > 2:
            biases = in_tensors[2]
            if len(biases.shape) == 1:
                if biases.shape[0] == mat1.shape[0]:
                    biases = np.expand_dims(biases, -1)
        else:
            biases = 0

        out_dtype = qrec.out_qs[0].dtype if qrec.ktype.startswith(
            'float') else np.float32
        output_tensor = np.matmul(mat1, mat2).astype(
            out_dtype) + np.atleast_1d(biases).astype(out_dtype)
        return qrec.get_outputs(params, [output_tensor], ktype="float")
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
        in_dtype = qrec.in_qs[0].dtype if qrec.ktype.startswith(
            'float') else np.float32
        if params.upper_bound is None:
            return qrec.get_outputs(
                params, [np.maximum(in_tensor, in_dtype(params.lower_bound))],
                ktype="float")
        return qrec.get_outputs(params, [
            np.minimum(np.maximum(in_tensor, in_dtype(params.lower_bound)),
                       in_dtype(params.upper_bound))
        ],
                                ktype="float")
Esempio n. 15
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
        in_dims, out_dims = cls.calc_transposed_dims(params)
        in_tensor = in_tensor.transpose(in_dims[0].transpose_to_order(
            ("h", "w", "c")))
        w_out = out_dims[0].w
        h_out = out_dims[0].h
        c_out = out_dims[0].c
        w_in = in_dims[0].w
        h_in = in_dims[0].h
        wstep = (w_in - 1) / w_out
        hstep = (h_in - 1) / h_out
        out_tensor = np.empty((h_out, w_out, c_out))
        for i in range(h_out):
            y_l, y_h = math.floor(hstep * i), math.ceil(hstep * i)
            hc = (hstep * i) - y_l
            for j in range(w_out):
                x_l, x_h = math.floor(wstep * j), math.ceil(wstep * j)
                wc = (wstep * j) - x_l
                P1 = in_tensor[y_l, x_l, :]
                P2 = in_tensor[y_l, x_h, :]
                P3 = in_tensor[y_h, x_l, :]
                P4 = in_tensor[y_h, x_h, :]
                out_tensor[i, j, :] = P1 * (1 - wc) * (1 - hc) \
                    + P2 * wc * (1 - hc) \
                    + P3 * (1 - wc) * hc \
                    + P4 * wc * hc

        out_tensor = out_tensor.transpose(out_dims[0].transpose_from_order(
            ("h", "w", "c")))
        return qrec.get_outputs(params, [out_tensor], ktype="float")
Esempio n. 16
0
    def execute(cls, params,
                in_tensors,
                qrec: QRec,
                **kwargs):

        in_tensors = qrec.prepare_inputs(params, in_tensors, ktype="symmetric")
        func = PIECEWISE_OPS[params.__class__]
        op = func['op']
        if func['is_mult']:
            i1 = in_tensors[0].astype(np.int32)
            i2 = in_tensors[1].astype(np.int32)
            res = op(i1, i2, np.int32)
            q_calc = QType.Pow2(
                bits=32, q=qrec.in_qs[0].q+qrec.in_qs[1].q, signed=True)
            res = qrec.out_qs[0].reduce_from(res, q_calc)
        else:
            off_in = abs(qrec.in_qs[0].q - qrec.in_qs[1].q)
            if qrec.in_qs[0].q > qrec.in_qs[1].q:
                i1 = at_norm(in_tensors[0].astype(np.int32), off_in)
                i2 = in_tensors[1].astype(np.int32)
            else:
                i1 = in_tensors[0].astype(np.int32)
                i2 = at_norm(in_tensors[1].astype(np.int32), off_in)
            res = op(i1, i2, None)
            q_calc = QType.Pow2(bits=32, q=min(qrec.in_qs[0].q, qrec.in_qs[1].q), signed=True)
            res = qrec.out_qs[0].reduce_from(res, q_calc)
        return qrec.get_outputs(params, [res], ktype="symmetric")
Esempio n. 17
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        qname = kwargs['qname']
        params = typing_cast(SplitParameters, params)
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype=qname)[0]
        out_tensors = params.numpy_split(in_tensor)
        return qrec.get_outputs(params, out_tensors, ktype=qname)
Esempio n. 18
0
    def execute(cls, params,
                in_tensors,
                qrec: QRec,
                **kwargs):
        in_tensors = qrec.prepare_inputs(params, in_tensors, ktype="symmetric")
        if isinstance(params, Broadcastable) and params.is_broadcasted:
            in_tensors = params.broadcast_inputs(in_tensors)
        func = PIECEWISE_OPS[params.__class__]
        op = func['op']

        if func['is_mult']:
            compute_in_out_scale(qrec, in_idx=(0, 1), out_idx=0)
            scale_mul_biases_q = qrec.cache['scale_mul_biases_q']
            i1 = in_tensors[0].astype(np.int32)
            i2 = in_tensors[1].astype(np.int32)
            out_tensor = scale_mul_biases_q.apply_scales(op(i1, i2, np.int32))
        else:
            # larger scale should be scaled
            set_add_in_scale(qrec)
            scale_mul_biases_q = qrec.cache['scale_mul_biases_q']
            if qrec.cache['scaled_idx']:
                i1 = in_tensors[0].astype(np.int32)
                i2 = qrec.cache['scale_in_mul_biases_q'].apply_scales(in_tensors[1])
            else:
                i1 = qrec.cache['scale_in_mul_biases_q'].apply_scales(in_tensors[0])
                i2 = in_tensors[1].astype(np.int32)

            out_tensor = scale_mul_biases_q.apply_scales(op(i1, i2, None))
        return qrec.get_outputs(params, [qrec.out_qs[0].clip(out_tensor)], ktype="symmetric")
Esempio n. 19
0
 def execute(cls, params, in_tensors, qrec: QRec, **kwargs):
     in_tensor = qrec.prepare_inputs(params, in_tensors,
                                     ktype="symmetric")[0]
     compute_in_out_scale(qrec)
     relu_lb = qrec.in_qs[0].quantize(params.lower_bound)
     in_tensor = np.maximum(in_tensor, relu_lb)
     if params.upper_bound is not None and not NNForceRelu.FORCE_RELU:
         relu_ub = qrec.in_qs[0].quantize(params.upper_bound)
         in_tensor = np.minimum(in_tensor, relu_ub)
     scale_mul_biases_q = qrec.cache['scale_mul_biases_q']
     in_tensor = scale_mul_biases_q.apply_scales(in_tensor)
     if qrec.out_qs[0] != qrec.in_qs[0]:
         return qrec.get_outputs(
             params, [qrec.out_qs[0].reduce_from(in_tensor, qrec.in_qs[0])],
             ktype="symmetric")
     return qrec.get_outputs(params, [in_tensor], ktype="symmetric")
Esempio n. 20
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):
        boxes = in_tensors[0][
            0] if not params.center_point_box else convert_cnts2cors(
                in_tensors[0][0])
        scores = in_tensors[1][0]
        n_boxes = len(scores[0])
        n_classes = len(scores)
        scores_q = qrec.in_qs[1]

        indexes = np.zeros((params.max_output_boxes_per_class * n_classes, 3))
        idxs_count = 0
        for class_id in range(n_classes):
            bbox_buff = []
            counter = 0
            for box_id in range(n_boxes):
                class_score = scores[class_id, box_id]
                if class_score > scores_q.quanize(params.nms_score_threshold):
                    bbox_buff.append({
                        "index": box_id,
                        "score": class_score,
                        "box": boxes[box_id],
                        "alive": True
                    })
                    counter += 1

            # Bubble sort to sort the scores
            changed = True
            while changed:
                changed = False
                for i in range(counter - 1):
                    if bbox_buff[i]["score"] < bbox_buff[i + 1]["score"]:
                        temp = bbox_buff[i]
                        bbox_buff[i] = bbox_buff[i + 1]
                        bbox_buff[i + 1] = temp
                        changed = True

            # NMS
            for idx in range(counter):
                for idx_int in range(idx + 1, counter):
                    if not bbox_buff[idx_int]["alive"]:
                        continue
                    intersection = rect_intersect_area(
                        bbox_buff[idx]["box"], bbox_buff[idx_int]["box"])
                    union = rect_union_area(bbox_buff[idx]["box"],
                                            bbox_buff[idx_int]["box"])
                    if intersection >= (scores_q.quanize(
                            params.nms_iou_threshold) * union):
                        bbox_buff[idx_int]["alive"] = False

            class_idxs_count_start = idxs_count
            for bb in bbox_buff:
                if (idxs_count - class_idxs_count_start
                    ) > params.max_output_boxes_per_class:
                    break
                if bb["alive"]:
                    indexes[idxs_count] = np.array([0, class_id, bb['index']])
                    idxs_count += 1

        return qrec.get_outputs(params, [np.array(indexes)], ktype="float")
Esempio n. 21
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
        return qrec.get_outputs(params,
                                [np.minimum(np.maximum(in_tensor, -1.0), 1.0)],
                                ktype="float")
Esempio n. 22
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
        output = in_tensor * (in_tensor > 0) + in_tensor * \
            params.leak_factor * (in_tensor < 0)
        return qrec.get_outputs(params, [output], ktype="float")
Esempio n. 23
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):
        in_tensor = qrec.prepare_inputs(params, in_tensors,
                                        ktype="symmetric")[0]

        upper_bound = qrec.in_qs[0].quantize(np.array([1.]))
        in_tensor = np.minimum(np.maximum(in_tensor, -upper_bound),
                               upper_bound)
        return qrec.get_outputs(params, [in_tensor], ktype="symmetric")
Esempio n. 24
0
 def execute(cls, params, in_tensors, qrec: QRec, **kwargs):
     if qrec is None:
         qrec = AllFloatQRec()
     old_err = np.seterr(over='raise')
     in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
     in_tensor = softmax_func(in_tensor, axis=params.axis)
     np.seterr(**old_err)
     return qrec.get_outputs(params, [in_tensor], ktype="float")
Esempio n. 25
0
 def execute(cls, params, in_tensors, qrec: QRec, **kwargs):
     in_tensors = qrec.prepare_inputs(params, in_tensors, ktype="symmetric")
     LOG.debug("matscale input %s",
               ",".join([t.dtype.name for t in in_tensors]))
     if len(params.in_dims) == 3:
         output_tensor = cls.matscale3(in_tensors, qrec)
     else:
         output_tensor = cls.matscale2(in_tensors, qrec)
     return qrec.get_outputs(params, [output_tensor], ktype="symmetric")
Esempio n. 26
0
def sigmoid(params, in_tensors, qrec: QRec, details=None):
    del details
    if qrec.ktype == 'scaled':
        raise NotImplementedError()
    in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="symmetric")[0]
    dqinput = qrec.in_qs[0].dequantize(in_tensor)
    return qrec.get_outputs(
        params, [qrec.out_qs[0].quantize(1 / (1 + np.exp(-dqinput)))],
        ktype="symmetric")
Esempio n. 27
0
    def sum_execute(cls, params, in_tensors, qrec: QRec, **kwargs):
        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]

        return qrec.get_outputs(params, [
            np.sum(
                in_tensor, axis=tuple(params.axis), keepdims=params.keep_dims)
        ],
                                ktype="float")
Esempio n. 28
0
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        old_err = np.seterr(over='raise')
        in_tensor = qrec.prepare_inputs(params, in_tensors,
                                        ktype="symmetric")[0]
        # TODO - Implement properly quantized version
        in_tensor = qrec.in_qs[0].dequantize(in_tensor)
        in_tensor = qrec.out_qs[0].quantize(softmax_func(in_tensor))
        np.seterr(**old_err)
        return qrec.get_outputs(params, [in_tensor], ktype="symmetric")
    def execute(cls, params, in_tensors, qrec: QRec, **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensor = qrec.prepare_inputs(params, in_tensors, ktype="float")[0]
        in_dtype = qrec.in_qs[0].dtype if qrec.ktype.startswith(
            'float') else np.float32
        if in_dtype == np.float32:
            return qrec.get_outputs(params,
                                    [np.tanh(in_tensor).astype(in_dtype)],
                                    ktype="float")
        else:
            if qrec.cache.get('kernel_type') == "lut":
                return qrec.get_outputs(params,
                                        [tanh_lut_float(in_tensor, in_dtype)],
                                        ktype="float")
            return qrec.get_outputs(
                params, [np_fasttanh(in_tensor, dtype=in_dtype, doalt=True)],
                ktype="float")
Esempio n. 30
0
    def execute(cls, params,
                in_tensors,
                qrec: QRec,
                **kwargs):

        if qrec is None:
            qrec = AllFloatQRec()
        in_tensors = qrec.prepare_inputs(params, in_tensors, ktype="float")
        output = cls.FUNC(*in_tensors)
        return qrec.get_outputs(params, [output], ktype="float")