Esempio n. 1
0
    def get_darwin_dataset(self, assets, cumulative=True, rebase=False):

        # Type checks for mandatorily used arguments
        if isinstance(assets, str):
            _symbols = [assets]
        elif isinstance(assets, list):
            _symbols = [a for a in assets]
        else:
            raise TypeError("Invalid DARWIN symbols array '{0}'. "
                            "It should be a list of strings.".format(assets))

        # Get Quotes
        _portfolio = self.info_api._Get_Historical_Quotes_(_symbols=_symbols)

        # Rebase to common dates
        if rebase:
            _portfolio.dropna(inplace=True)

        # Calculate cumulative portfolio returns
        _portfolio = calculate_portfolio_returns(_portfolio,
                                                 cumulative=cumulative)

        # symbols now contains a dataframe of Quotes by asset, one column per.

        # symbols.columns will have a different source later on after calculating
        # the portfolio
        _portfolio.columns = ['Close']

        return qm.Chart(_portfolio)
Esempio n. 2
0
def update_graph_from_dropdown(dropdown_nsub, multi, arglist, dropdown):
    df = None
    if dropdown is None or len(dropdown) <= 0:
        return None
    if len(dropdown.split('.')) > 1:
        df = fetch_ib_history(dropdown)
    else:
        try:
            df = web.DataReader(dropdown, 'yahoo', dt.datetime(2016, 1, 1),
                                dt.datetime.now())
        except Exception as e:
            try:
                df = bca.fetch_history(dropdown, dt.datetime(2016, 1, 1),
                                       dt.datetime.now())
            except Exception:
                pass

    if df is None or len(df) <= 0:
        print(f'update_graph_from_dropdown: no data for {dropdown}')
        return None
    print(df.tail())
    print('Loading')
    ch = qm.Chart(df)

    # Get functions and arglist for technical indicators
    if arglist:
        arglist = arglist.replace('(', '').replace(')', '').split(';')
        arglist = [args.strip() for args in arglist]
        for function, args in zip(multi, arglist):
            if args:
                args = args.split(',')
                newargs = []
                for arg in args:
                    try:
                        arg = int(arg)
                    except:
                        try:
                            arg = float(arg)
                        except:
                            pass
                    newargs.append(arg)
                print(newargs)
                # Dynamic calling
                getattr(qm, function)(ch, *newargs)
            else:
                getattr(qm, function)(ch)
    else:
        for function in multi:
            # Dynamic calling
            getattr(qm, function)(ch)

    # Return plot as figure
    fig = ch.to_figure(width=1100)
    return fig
Esempio n. 3
0
def update_graph_from_dropdown(dropdown, multi, arglist):
    print('start')
    # Get Quantmod Chart
    df = web.DataReader(dropdown, 'yahoo', dt.datetime(2016, 1, 1),
                        dt.datetime.now())
    print('Loading')
    ch = qm.Chart(df)
    print(ch)

    # try:
    #     df = web.DataReader(dropdown, 'yahoo', dt.datetime(2016, 1, 1), dt.datetime.now())
    #     print('Loading')
    #     ch = qm.Chart(df)
    #     print(ch)
    # except:
    #     pass

    # Get functions and arglist for technical indicators
    if arglist:
        arglist = arglist.replace('(', '').replace(')', '').split(';')
        arglist = [args.strip() for args in arglist]
        for function, args in zip(multi, arglist):
            if args:
                args = args.split(',')
                newargs = []
                for arg in args:
                    try:
                        arg = int(arg)
                    except:
                        try:
                            arg = float(arg)
                        except:
                            pass
                    newargs.append(arg)
                print(newargs)
                # Dynamic calling
                getattr(qm, function)(ch, *newargs)
            else:
                getattr(qm, function)(ch)
    else:
        for function in multi:
            # Dynamic calling
            getattr(qm, function)(ch)

    # Return plot as figure
    fig = ch.to_figure(width=1100)
    return fig
Esempio n. 4
0
def update_graph_from_dropdown(dropdown, multi, arglist):

    # Get Quantmod Chart
    try:
        #df = web.DataReader(dropdown, 'stooq', dt.datetime(2016, 1, 1), dt.datetime.now())
        df = web.DataReader(dropdown, 'moex', dt.datetime(2016, 1, 1), dt.datetime.now()). \
            rename(dict(zip(['OPEN', 'LOW', 'HIGH', 'CLOSE', 'VALUE'], ['Open', 'High', 'Low', 'Close', 'Volume'])),
                   axis=1)
        print('Loading')
        ch = qm.Chart(df)
    except:
        print('finito')
        raise

    # Get functions and arglist for technical indicators
    if arglist:
        arglist = arglist.replace('(', '').replace(')', '').split(';')
        arglist = [args.strip() for args in arglist]
        for function, args in zip(multi, arglist):
            if args:
                args = args.split(',')
                newargs = []
                for arg in args:
                    try:
                        arg = int(arg)
                    except:
                        try:
                            arg = float(arg)
                        except:
                            pass
                    newargs.append(arg)
                print(newargs)
                # Dynamic calling
                getattr(qm, function)(ch, *newargs)
            else:
                getattr(qm, function)(ch)
    else:
        for function in multi:
            # Dynamic calling
            getattr(qm, function)(ch)

    # Return plot as figure
    fig = ch.to_figure(width=1100)
    return fig
Esempio n. 5
0
    def update_graph_from_dropdown(dropdown, multi, arglist):

        # Get Quantmod Chart
        print('Loading')
        strategy, config, res = setup_config(dropdown)
        candles, trade_scatter = setup_chart(res)
        ch = qm.Chart(candles, src=src)

        # Get functions and arglist for technical indicators
        if arglist:
            for function in multi:
                try:
                    config = talib_dict(json.loads(arglist))
                    indicator = function.split("_")[1]
                    newargs = config[indicator]
                    # Dynamic calling
                    fn = getattr(qm, function)
                    fn(ch, **newargs)
                except Exception as e:
                    print(e)
                    getattr(qm, function)(ch)
                    pass
        else:
            for function in multi:
                # Dynamic calling
                getattr(qm, function)(ch)

        fig = ch.to_figure(width=1100)

        # hack figure
        index = 0
        for i in range(len(fig["layout"].keys())):
            axis = "yaxis" + str(i)
            if axis in fig["layout"]:
                index = i + 1
        yrange = [candles["low"].min(), candles["high"].max()]
        fig["layout"]["yaxis"]["range"] = yrange
        fig["layout"]["yaxis" + str(index)] = fig["layout"]["yaxis2"]
        fig["layout"]["plot_bgcolor"] = 'rgba(0, 0, 0, 0.00)'
        trade_scatter["yaxis"] = "y1"
        fig["data"].append(trade_scatter)

        return fig
'''
Created on Feb 4, 2019

@author: bperlman1
'''
import dash
import quantmod as qm
import datetime as dt
import pandas_datareader.data as web
import dash_core_components as dcc
import dash_html_components as html

app = dash.Dash(__name__)
df = web.DataReader('SPY', 'yahoo', dt.datetime(2016, 1, 1), dt.datetime.now())
print('Loading')
ch = qm.Chart(df)
fig = ch.to_figure(width=1100)

app.layout = html.Div([
    dcc.Graph(id='my-graph', figure=fig),
], )

if __name__ == '__main__':
    app.server.run(port=8500)
Esempio n. 7
0
# In[]:

import numpy as np
import quantmod as qm
import pandas as pd
import pandas_datareader as web


# In[]:

ticker = 'AAPL'
df = web.DataReader(ticker, data_source='yahoo', start='2016/01/01')
df = df.tail(365)
ch = qm.Chart(df, start='2015/01/01', end='2017/03/02')

ch.has_open
ch.has_high
ch.has_low
ch.has_close
ch.op
ch.df

ch.ind
ch.pri
ch.adjust(inplace=True)
ch.adjust_volume(inplace=True)

ch.has_OHLC
print(ch.has_OHLCV)

ch.add_MA()