Esempio n. 1
0
def mZX(q, ix, iy):
    Gates.H(q, iy)
    Gates.CNOT(q, iy, ix)
    m = Measurement.measure(q, ix)
    Gates.CNOT(q, iy, ix)
    Gates.H(q, iy)
    print m, q
Esempio n. 2
0
 def check_state(self, q):
     Gates.H(q, 0)
     Gates.H(q, 1)
     m = Measurement.measure(q, 0)
     mm = Measurement.measure(q, 1)
     ii = 0 if m == 1 else 1
     i = 0 if mm == 1 else 1
     return i + 2 * ii
Esempio n. 3
0
 def test_103_check_plus_minus(self):
     q = Qubits(1)
     Gates.H(q, 0)
     assert self.check_plus_minus(q) == True
     q = Qubits(1)
     Gates.X(q, 0)
     Gates.H(q, 0)
     assert self.check_plus_minus(q) == False
Esempio n. 4
0
def mXX(q, ix, iy):
    Gates.H(q, ix)
    print q
    Gates.H(q, iy)
    print q
    Gates.CNOT(q, iy, ix)
    print q
    m = Measurement.measure(q, ix)
    print m, q
    Gates.CNOT(q, iy, ix)
    print m, q
    Gates.H(q, iy)
    print m, q
    Gates.H(q, ix)
    print m, q
Esempio n. 5
0
 def test_teleportation(self):
   q = Qubits(3)
   alice = 0
   bob = 1
   message = 2
   Gates.H(q, message)
   # entangle alice with bob
   Gates.H(q, alice)
   Gates.CNOT(q, alice, bob)
   # entangle message with alice
   print Gates.CNOT(q, message, alice)
   print Gates.H(q, message)
   am = Measurement.measure(q, alice)
   mm = Measurement.measure(q, message)
   print am == -1, mm == -1, q
Esempio n. 6
0
 def check_bva(self, n, oracle):
     q = Qubits(n + 1)
     Gates.X(q, n)
     for ix in xrange(n + 1):
         Gates.H(q, ix)
     oracle(q)
     for ix in xrange(n):
         Gates.H(q, ix)
     r = [True] * n
     for ix in xrange(n):
         m = Measurement.measure(q, ix)
         if m == -1:
             Gates.X(q, ix)
         r[ix] = (m != 1)
     return r
Esempio n. 7
0
 def all_bell_states(self, q, ix):
     Gates.H(q, 0)
     if ix >= 2:
         Gates.X(q, 1)
     Gates.CNOT(q, 0, 1)
     if ix % 2 == 1:
         Gates.Z(q, 0)
Esempio n. 8
0
 def w_state(self, q):
     Gates.X(q, 0)
     power = 1
     missedpower = -1
     while power < q.length:
         oldpower = power
         power = power * 2
         if power > q.length:
             power = q.length
             missedpower = oldpower
         Gates.H(q, power - 1)
         for ix in range(oldpower - 1):
             index = oldpower + ix
             if ix < q.length and index < q.length:
                 Gates.CCNOT(q, ix, power - 1, index)
             if ix < q.length and index < q.length:
                 Gates.CNOT(q, index, ix)
             if index < q.length:
                 Gates.CNOT(q, index, power - 1)
         Gates.CNOT(q, power - 1, oldpower - 1)
     if missedpower > -1:
         Gates.CCNOT(q, 0, q.length - 1, 1)
         Gates.CCNOT(q, 1, 0, q.length - 1)
         m = Measurement.rr_measure(q, q.length - 1, 0)
         Gates.CCNOT(q, 1, 0, q.length - 1)
         Gates.CNOT(q, q.length - 1, 0)
         Gates.CNOT(q, q.length - 1, 1)
         return q
Esempio n. 9
0
    def controlled_x(self, q, rnd):
        Gates.Z(q, 0)
        if Measurement.rr_measurement(q, [PauliZ(), PauliX()], [0, 1],
                                      rnd) == -1:
            Gates.Z(q, 1)

        Gates.H(q, 1)
        Gates.Z(q, 0)
Esempio n. 10
0
 def bell_state(self, q, index):
     assert q.length == 2
     Gates.H(q, 0)
     Gates.CNOT(q, 0, 1)
     if index % 2 == 1:
         Gates.Z(q, 1)
     if index >= 2:
         Gates.X(q, 1)
Esempio n. 11
0
 def check_bell(self, q):
     Gates.CNOT(q, 0, 1)
     Gates.H(q, 0)
     m = Measurement.measure(q, 0)
     mm = Measurement.measure(q, 1)
     i = 0 if m == 1 else 1
     ii = 0 if mm == 1 else 1
     return i + 2 * ii
Esempio n. 12
0
    def superposition_bitstrings(self, q, bits1, bits2):
        ix, bitsa, bitsb = self.__find_one_zero(bits1, bits2)
        Gates.H(q, ix)
        for ii in range(0, len(bits1)):
            if ix == ii:
                continue
            if bitsb[ii]:
                Gates.X(q, ii)
                Gates.CNOT(q, ix, ii)

            if bitsa[ii]:
                Gates.CNOT(q, ix, ii)
Esempio n. 13
0
 def w_state(self, q):
     Gates.X(q, 0)
     power = 1
     while power < q.length:
         oldpower = power
         power = power * 2
         Gates.H(q, power - 1)
         for ix in range(oldpower - 1):
             index = oldpower + ix
             Gates.CCNOT(q, ix, power - 1, index)
             Gates.CNOT(q, index, ix)
             Gates.CNOT(q, index, power - 1)
         Gates.CNOT(q, power - 1, oldpower - 1)
     return q
Esempio n. 14
0
 def controlled_x_general(self, q):
     # Gates.CNOT(q, 0, 1)
     items = [0.1, 0.9]
     r1, r2, r3 = choice(items), choice(items), choice(items)
     bad = [[0.1, 0.9, 0.9], [0.9, 0.9, 0.1]]
     if [r1, r2, r3] in bad:
         r1, r2, r3 = [0.1, 0.1, 0.1]
     print r1, r2, r3
     q.add_qubit()
     #print "before measurement", q
     p1 = self.copy_qubit(q, 1, 0, r1)
     #print "after measurement", q
     Gates.H(q, 0)
     Gates.H(q, 2)
     p2 = Measurement.rr_measurement(q, [PauliZ(), PauliZ()], [0, 2], r2)
     Gates.H(q, 0)
     Gates.H(q, 2)
     if p2 == -1:
         Gates.Z(q, 1)
     if p1 != Measurement.rr_measurement(q, [PauliZ()], [0], r3):
         Gates.X(q, 2)
     #print "after CNOT", q
     q.remove_qubit()
Esempio n. 15
0
 def all_superposition(self, q):
     for ix in range(q.length):
         Gates.H(q, ix)
Esempio n. 16
0
 def ghz_state(self, q):
     l = q.length
     Gates.H(q, 0)
     for ix in xrange(1, l):
         Gates.CNOT(q, 0, ix)
Esempio n. 17
0
 def generate_superposition(self, qs):
     for ix in range(qs.length):
         Gates.H(qs, ix)
Esempio n. 18
0
 def superposition(self, q):
     Gates.H(q, 0)
     Gates.H(q, 1)
Esempio n. 19
0
 def plus_state(self, q):
     return Gates.H(q, 0)
Esempio n. 20
0
 def basis_change(self, q):
     Gates.H(q, 0)
Esempio n. 21
0
 def test_two_qubit_gate_2(self):
     q = Qubits(2)
     Gates.H(q, 0)
     Gates.H(q, 1)
     self.two_qubit_gate_2(q)
     self.assert_signs(q, [(0, 1), (1, 1), (2, 1), (3, -1)])
Esempio n. 22
0
 def plus_minus_state(self, q, sign):
     assert q.length == 1
     if sign < 0:
         Gates.X(q, 0)
     Gates.H(q, 0)
Esempio n. 23
0
 def ghz_state(self, q):
     Gates.H(q, 0)
     for ix in range(1, q.length):
         Gates.CNOT(q, 0, ix)
     return q
Esempio n. 24
0
 def copy_qubit(self, q, source, target, r):
     Gates.H(q, target)
     return Measurement.rr_measurement(q, [PauliZ(), PauliZ()],
                                       [target, source], r)
Esempio n. 25
0
 def superposition(self, q, bits):
     Gates.H(q, 0)
     for ix in range(1, len(bits)):
         if bits[ix]:
             Gates.CNOT(q, 0, ix)
Esempio n. 26
0
 def bell_state(self, q):
     Gates.H(q, 0)
     return Gates.CNOT(q, 0, 1)
Esempio n. 27
0
 def check_plus_minus(self, q):
     Gates.H(q, 0)
     return not self.single_qubit(q)
Esempio n. 28
0
    print q
    Gates.CNOT(q, iy, ix)
    print q
    m = Measurement.measure(q, ix)
    print m, q
    Gates.CNOT(q, iy, ix)
    print m, q
    Gates.H(q, iy)
    print m, q
    Gates.H(q, ix)
    print m, q


def mZX(q, ix, iy):
    Gates.H(q, iy)
    Gates.CNOT(q, iy, ix)
    m = Measurement.measure(q, ix)
    Gates.CNOT(q, iy, ix)
    Gates.H(q, iy)
    print m, q


q = Qubits(2)
Gates.H(q, 0)
Gates.H(q, 1)
Gates.CY(q, 1, 0)
Gates.CZ(q, 0, 1)
Gates.Z(q, 0)
Gates.Z(q, 1)

print(q)