Esempio n. 1
0
 def decode(self, p, err_op, **kw):
     decode0 = self.decode0
     decode1 = self.decode1
     op = decode0.decode(p, err_op, **kw)
     if op is None:
         write("F")
         op = decode1.decode(p, err_op, **kw)
     return op
Esempio n. 2
0
    def build_spin_chain(G):
        I = G.get_ident()
        In = G.get_ident(degree)
        nt_ops = [op for op in G if op != I and op.phase == 1]
        while 1:
            while 1:
                A = [I] * degree
                B = [I] * degree

                for i in range(weight):
                    a = choice(nt_ops)
                    A[i] = a
                    B[(i + 1) % degree] = a
                A = reduce(matmul, A)
                B = reduce(matmul, B)
                if A * B == B * A:
                    break

            gen = [A, B]
            for i in range(2, degree):
                idxs = [A.idxs[(-i + j) % degree] for j in range(degree)]
                op = Tensor(G, idxs, A.phase)
                gen.append(op)
            print("gen:")
            for op in gen:
                print("  ", op)

            S = mulclose(gen)
            print("|S| =", len(S))

            #ops = [G.get_dense(op) for op in S]
            #P = reduce(add, ops)
            P = G.get_dense(S[0])
            for op in S[1:]:
                P = P + G.get_dense(op)
            r = P.norm()
            if abs(r) > EPSILON:
                break
            write(".")

        show_spec(P)
        find_errors(G, P, degree)
        return
Esempio n. 3
0
 def __init__(self, code, weight=4, maxsize=256 * 1024):
     lookup = {}
     n = code.n
     Hz = code.Hz
     Lz = code.Lz
     err = zeros2(n)
     write("LookupDecoder: building...")
     w = 0
     #for w in range(0, weight+1):
     count = 0
     remove = set()
     while w < weight + 1 or len(lookup) < maxsize:
         for idxs in choose(list(range(n)), w):
             err[:] = 0
             err[idxs] = 1
             syn = dot2(Hz, err)
             key = syn.tostring()
             other = lookup.get(key)
             if other is None:
                 lookup[key] = idxs
             elif len(other) == w:
                 for idx in other:
                     err[idx] = (err[idx] + 1) % 2
                 assert dot2(Hz, err).sum() == 0
                 #assert dot2(Lz, err).sum()==0, "not an exact decoder."
                 if dot2(Lz, err).sum():
                     remove.add(key)
         if len(lookup) == count:
             break
         count = len(lookup)
         w += 1
     write("\n")
     for key in remove:
         del lookup[key]
     print("lookup size:", len(lookup))
     self.lookup = lookup
     self.code = code
Esempio n. 4
0
def test_code(Hxi, Hzi, Hx, Lx, Lz, Lx0, Lx1, LxiHx, **kw):
    code = CSSCode(Hx=Hxi, Hz=Hzi)
    print(code)

    assert rank(intersect(Lx, code.Lx)) == code.k
    assert rank(intersect(Lz, code.Lz)) == code.k

    verbose = argv.verbose
    decoder = get_decoder(argv, argv.decode, code)

    if decoder is None:
        return

    p = argv.get("p", 0.01)
    N = argv.get("N", 0)

    distance = code.n
    count = 0
    failcount = 0
    nonuniq = 0

    logops = []

    for i in range(N):
        err_op = ra.binomial(1, p, (code.n, ))
        err_op = err_op.astype(numpy.int32)
        op = decoder.decode(p, err_op, verbose=verbose, argv=argv)

        c = 'F'
        success = False
        if op is not None:
            op = (op + err_op) % 2
            # Should be a codeword of Hz (kernel of Hz)
            assert dot2(code.Hz, op).sum() == 0
            write("%d:" % op.sum())

            # Are we in the image of Hx ? If so, then success.
            success = dot2(code.Lz, op).sum() == 0

            if success and op.sum():
                nonuniq += 1

            c = '.' if success else 'x'

            if op.sum() and not success:
                distance = min(distance, op.sum())
                write("L")
                logops.append(op.copy())

        else:
            failcount += 1
        write(c + ' ')
        count += success

    if N:
        print()
        print(argv)
        print("error rate = %.8f" % (1. - 1. * count / (i + 1)))
        print("fail rate = %.8f" % (1. * failcount / (i + 1)))
        print("nonuniq = %d" % nonuniq)
        print("distance <= %d" % distance)

    mx0, mx1 = len(Lx0), len(Lx1)
    LxHx = numpy.concatenate((Lx0, Lx1, Hx))
    for op in logops:
        print(op.sum())
        #print(shortstr(op))
        #print(op.shape)
        #print(op)
        K = solve(LxHx.transpose(), op)
        K.shape = (1, len(K))
        print(shortstrx(K[:, :mx0], K[:, mx0:mx0 + mx1], K[:, mx0 + mx1:]))
Esempio n. 5
0
def main():

    m = argv.get('m', 6)  # constraints (rows)
    n = argv.get('n', 16)  # bits (cols)
    j = argv.get('j', 3)  # column weight (left degree)
    k = argv.get('k', 8)  # row weight (constraint weight; right degree)

    #assert 2*m<=n, "um?"

    max_iter = argv.get('max_iter', 200)
    verbose = argv.verbose
    check = argv.get('check', False)

    strop = shortstr

    Lx = None
    Lz = None
    Hx = None
    Tz = None
    Hz = None
    Tx = None
    build = argv.get('build', False)
    logops_only = argv.get("logops_only", True)

    code = None

    if argv.code == 'ldpc':

        H = ldpc(m, n, j, k)
        code = CSSCode(Hz=H, Hx=zeros2(0, n))

    elif argv.code == 'cycle':

        #n = argv.get('n', 20)
        #m = argv.get('m', 18)

        row = str(argv.get('H', '1101'))

        H = []

        for i in range(n):
            h = [0] * n
            for j, c in enumerate(row):
                h[(i + j) % n] = int(c)
            H.append(h)

        delta = n - m
        for i in range(delta):
            H.pop(i * n // delta - i)

#        while len(H) > m:
#            idx = randint(0, len(H)-1)
#            H.pop(idx)

        Hz = array2(H)

        print(shortstr(Hz))

        #print shortstr(solve.row_reduce(Hz))

#        code = CSSCode(Hz=Hz)
#        print
#        print code
#        print code.weightstr()
#
#        decoder = StarDynamicDistance(code)
#        L = decoder.find(verbose=verbose)
#        print shortstr(L)
#        print "distance:", L.sum()
#        return

    elif argv.code == "opticycle":

        code = opticycle(m, n)

        H = Hz = code.Hz

        #return

    elif argv.code == 'tree':

        k = argv.get('k', 5)
        n = 2**k + 1

        code = build_tree(45)
        print(code)

#        graph = Graph()
#        for i in range(H.shape[0]):
#            edge = list(numpy.where(H[i])[0])
#            #print edge,
#            for i0 in edge:
#              for i1 in edge:
#                if i0!=i1:
#                    graph.add_edge(i0, i1)
#
#        leaves = [idx for idx in range(n) if H[:, idx].sum()<=1]
#        print leaves
#
#
#        k = len(leaves)//2
#        print graph.metric(leaves[1], leaves[k])
#        return
#        for i in range(k-1):
#            #i0 = poprand(leaves)
#            #i1 = poprand(leaves)
#            u = zeros2(1, n)
#            u[0, leaves[i]] = 1
#            u[0, leaves[i+k]] = 1
#            # what about picking three leaves?
#            print (leaves[i], leaves[i+k]),
#            H = append2(H, u)
#        print
#
#        # if we take all the leaves we get degenerate...
#        leaves = [idx for idx in range(n) if H[:, idx].sum()<=1]
#        print "leaves:", leaves
#
#        #print shortstr(H)
#        #print
#        #print shortstr(solve.row_reduce(H))

#        code = CSSCode(Hz=H)
#        print code
#        print code.weightstr()

#        print numpy.where(code.Lx[3])
#
#        return

    elif argv.code == 'bicycle':

        from qupy.ldpc.bicycle import Bicycle_LDPC
        print("Bicycle_LDPC(%s, %s, %s, %s)" % (m, n, j, k))
        b = Bicycle_LDPC(m, n, j, k)
        Hx = Hz = b.H

    elif argv.code == 'toric':

        from qupy.ldpc.toric import Toric2D

        l = argv.get('l', 8)
        li = argv.get('li', l)
        lj = argv.get('lj', l)
        si = argv.get('si', 0)
        sj = argv.get('sj', 0)

        toric = Toric2D(li, lj, si, sj)
        Hx, Hz = toric.Hx, toric.Hz
        strop = toric.strop
        #print("Hx:")
        #print(shortstr(Hx))
        #print("Lx:")
        #print(shortstr(toric.Lx))
        code = CSSCode(Hx=Hx, Hz=Hz, Lx=toric.Lx, Lz=toric.Lz)

    elif argv.code == 'cylinder':

        from qupy.ldpc.toric import Cylinder

        l = argv.get('l', 8)
        li = argv.get('li', l)
        lj = argv.get('lj', l)
        si = argv.get('si', 0)
        sj = argv.get('sj', 0)
        assert si == 0

        surface = Cylinder(li, lj, sj)
        Hx, Hz = surface.Hx, surface.Hz
        strop = surface.strop
        #print("Hx:")
        #print(shortstr(Hx))
        #print("Lx:")
        #print(shortstr(surface.Lx))
        code = CSSCode(Hx=Hx, Hz=Hz)

    elif argv.code == 'torichie':

        from qupy.ldpc.toric import Toric2DHie
        l = argv.get('l', 8)

        toric = Toric2DHie(l)
        Hx, Hz = toric.Hx, toric.Hz

    elif argv.code == 'surface':

        from qupy.ldpc.toric import Surface
        l = argv.get('l', 8)
        si = argv.get('si', 0)  # todo
        sj = argv.get('sj', 0)

        surface = Surface(l)
        #Hx, Hz = surface.Hx, surface.Hz
        #strop = surface.strop
        #print shortstr(Hx)
        code = surface.get_code()

    elif argv.code == 'toric3':

        from qupy.ldpc.toric import Toric3D
        l = argv.get('l', 8)

        toric = Toric3D(l)
        Hx, Hz = toric.Hx, toric.Hz
        strop = toric.strop
        #print shortstr(Hx)

    elif argv.code == 'gcolor':

        from qupy.ldpc.gcolor import Lattice
        l = argv.get('l', 1)
        lattice = Lattice(l)
        #code = lattice.build_code()
        G = lattice.Hx
        print(shortstr(G))
        m, n = G.shape
        G1 = zeros2(m + 1, n + 1)
        G1[1:, 1:] = G
        G1[0, :] = 1
        print()
        print(shortstr(G1))
        for genus in range(1, 5):
            print(genus, strong_morthogonal(G1, genus))
        code = CSSCode(Hx=G1, Hz=G1)

    elif argv.code == 'self_ldpc':

        from qupy.ldpc.search import SelfContainingLDPC_Code
        ldpc_code = SelfContainingLDPC_Code(m, n, j, k)
        ldpc_code.search(max_step=argv.get('max_step', None), verbose=verbose)
        #print ldpc_code

        H = ldpc_code.H
        print("H:")
        print(shortstr(H))
        H = solve.linear_independent(H)
        Hx = Hz = H

        code = CSSCode(Hx=Hx, Hz=Hz)

    elif argv.code == 'cssldpc':

        from qupy.ldpc.search import CSS_LDPC_Code
        ldpc_code = CSS_LDPC_Code(m, n, j, k)
        ldpc_code.search(max_step=argv.get('max_step', None), verbose=verbose)
        #print ldpc_code

        Hx, Hz = ldpc_code.Hx, ldpc_code.Hz
        #print "Hx:"
        #print shortstr(Hx)
        Hx = solve.linear_independent(Hx)
        Hz = solve.linear_independent(Hz)
        #Hx = Hz = H

        code = CSSCode(Hx=Hx, Hz=Hz)

    elif argv.code == "hpack":

        code = hpack(n, j=j, k=k, check=check, verbose=verbose)

    elif argv.code == 'randldpc':

        mz = argv.get('mz', n // 3)
        rw = argv.get('rw', 12)  # row weight
        code = randldpc(n, mz, rw, check=check, verbose=verbose)

    elif argv.code == 'randcss':

        mx = argv.get('mx', n // 3)
        mz = argv.get('mz', n // 3)
        distance = argv.get("code_distance")
        code = randcss(n,
                       mx,
                       mz,
                       distance=distance,
                       check=check,
                       verbose=verbose)

    elif argv.code == 'sparsecss':

        mx = argv.get('mx', n // 3)
        mz = argv.get('mz', n // 3)
        weight = argv.get('weight', 4)
        code = sparsecss(n, mx, mz, weight, check=check, verbose=verbose)

    elif argv.code == 'ensemble':

        mx = argv.get('mx', n // 3)
        mz = argv.get('mz', mx)
        rw = argv.get('rw', 12)  # row weight
        maxw = argv.get('maxw', 4 * rw)
        C = argv.get("C", 100)
        code = ensemble.build(n,
                              mx,
                              mz,
                              rw,
                              maxw,
                              C,
                              check=check,
                              verbose=verbose)

    elif argv.code == "rm" or argv.code == "reed_muller":
        from qupy.ldpc import reed_muller
        r = argv.get("r", 1)
        m = argv.get("m", 4)
        puncture = argv.puncture
        cl_code = reed_muller.build(r, m, puncture)
        G = cl_code.G
        G = array2([row for row in G if row.sum() % 2 == 0])
        code = CSSCode(Hx=G, Hz=G)

    elif argv.code == "qrm":
        from qupy.ldpc.gallagher import get_code, hypergraph_product
        from qupy.ldpc import reed_muller
        r = argv.get("r", 1)
        m = argv.get("m", 4)
        puncture = argv.puncture
        cl_code = reed_muller.build(r, m, puncture)
        H = cl_code.G
        H = array2([row for row in H if row.sum() % 2 == 0])
        print(shortstr(H))
        m, n = 4, 4
        J = zeros2(m, n)
        for i in range(m):
            J[i, i] = 1
            J[i, (i + 1) % n] = 1
        print()
        print(shortstr(J))
        Hx, Hz, Lx, Lz = hypergraph_product(J, H)
        code = CSSCode(Hx=Hx, Hz=Hz, Lx=Lx, Lz=Lz)
        #print(code.weightstr())
        #print("Hz:")
        #print(shortstr(code.Hz))
        #print("Hx:")
        #print(shortstr(code.Hx))

    elif argv.code == "qgall":
        from qupy.ldpc.gallagher import make_gallagher, hypergraph_product
        l = argv.get("l", 3)  # column weight
        m = argv.get("m", 4)  # row weight
        n = argv.get("n", 8)  # cols
        r = argv.get("r", n * l // m)  # rows
        dist = argv.get("dist", 4)  # distance
        H = make_gallagher(r, n, l, m, dist)
        #print(H)
        rm = argv.get("rm", dist)
        J = zeros2(rm, rm)
        for i in range(rm):
            J[i, i] = 1
            J[i, (i + 1) % rm] = 1
        #print(J)
        Hx, Hz, Lx, Lz = hypergraph_product(J, H)
        code = CSSCode(Hx=Hx, Hz=Hz, Lx=Lx, Lz=Lz)
        #print(code.weightstr())
        #print("Hz:")
        #print(shortstr(code.Hz))
        #print("Hx:")
        #print(shortstr(code.Hx))

    elif argv.code == "qr7":
        H = parse("""
        ...1111
        .11..11
        1.1.1.1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "golay" or argv.code == "qr23":
        H = parse("""
        1.1..1..11111..........
        1111.11.1....1.........
        .1111.11.1....1........
        ..1111.11.1....1.......
        ...1111.11.1....1......
        1.1.1.111..1.....1.....
        1111...1..11......1....
        11.111...11........1...
        .11.111...11........1..
        1..1..11111..........1.
        .1..1..11111..........1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "dgolay":  # double golay code (tri-orthogonal)
        H = parse("""
        111111111111111111111111........................
        .1111.1.11..11..1.1....1.1111.1.11..11..1.1....1
        ..1111.1.11..11..1.1...1..1111.1.11..11..1.1...1
        ...1111.1.11..11..1.1..1...1111.1.11..11..1.1..1
        ....1111.1.11..11..1.1.1....1111.1.11..11..1.1.1
        .....1111.1.11..11..1.11.....1111.1.11..11..1.11
        1.....1111.1.11..11..1.11.....1111.1.11..11..1.1
        .1.....1111.1.11..11..11.1.....1111.1.11..11..11
        1.1.....1111.1.11..11..11.1.....1111.1.11..11..1
        .1.1.....1111.1.11..11.1.1.1.....1111.1.11..11.1
        ..1.1.....1111.1.11..111..1.1.....1111.1.11..111
        1..1.1.....1111.1.11..111..1.1.....1111.1.11..11
        11..1.1.....1111.1.11..111..1.1.....1111.1.11..1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "dham":  # double hamming code (tri-orthogonal)
        H = parse("""
        11111111........
        .11.1..1.11.1..1
        ..11.1.1..11.1.1
        ...11.11...11.11
        1...11.11...11.1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "ddham":  # double double hamming code
        H = parse("""
        1111111111111111................
        11111111........11111111........
        .11.1..1.11.1..1.11.1..1.11.1..1
        ..11.1.1..11.1.1..11.1.1..11.1.1
        ...11.11...11.11...11.11...11.11
        1...11.11...11.11...11.11...11.1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "qr31":
        H = parse("""
        1..1..1.1...11.11..............
        11.11.1111..1.11.1.............
        11111111.11.1.....1............
        .11111111.11.1.....1...........
        ..11111111.11.1.....1..........
        ...11111111.11.1.....1.........
        1..111.1.1111.11......1........
        11.111....11...........1.......
        .11.111....11...........1......
        ..11.111....11...........1.....
        ...11.111....11...........1....
        ....11.111....11...........1...
        1..1.1...11.11..............1..
        .1..1.1...11.11..............1.
        ..1..1.1...11.11..............1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "qr17":
        # not self-dual
        Hz = parse("""
        .11.1...11...1.11
        1.11.1...11...1.1
        11.11.1...11...1.
        .11.11.1...11...1
        1.11.11.1...11...
        .1.11.11.1...11..
        ..1.11.11.1...11.
        ...1.11.11.1...11
        1...1.11.11.1...1
        11...1.11.11.1...
        .11...1.11.11.1..
        ..11...1.11.11.1.
        ...11...1.11.11.1
        1...11...1.11.11.
        .1...11...1.11.11
        1.1...11...1.11.1
        11.1...11...1.11.
        """)
        Hx = parse("""
        ...1.111..111.1..
        11.1.....1.111..1
        111..111.1.....1.
        ....1.111..111.1.
        111.1.....1.111..
        .111..111.1.....1
        .....1.111..111.1
        .111.1.....1.111.
        1.111..111.1.....
        1.....1.111..111.
        ..111.1.....1.111
        .1.111..111.1....
        .1.....1.111..111
        1..111.1.....1.11
        ..1.111..111.1...
        1.1.....1.111..11
        11..111.1.....1.1
        """)
        Hz = solve.linear_independent(Hz)
        Hx = solve.linear_independent(Hx)
        code = CSSCode(Hx=Hx, Hz=Hz)

    elif argv.code == "qr41":
        # not self-dual
        Hz = parse("""
        .11.11..111.....1.1.11.1.1.....111..11.11
        1.11.11..111.....1.1.11.1.1.....111..11.1
        11.11.11..111.....1.1.11.1.1.....111..11.
        .11.11.11..111.....1.1.11.1.1.....111..11
        1.11.11.11..111.....1.1.11.1.1.....111..1
        11.11.11.11..111.....1.1.11.1.1.....111..
        .11.11.11.11..111.....1.1.11.1.1.....111.
        ..11.11.11.11..111.....1.1.11.1.1.....111
        1..11.11.11.11..111.....1.1.11.1.1.....11
        11..11.11.11.11..111.....1.1.11.1.1.....1
        111..11.11.11.11..111.....1.1.11.1.1.....
        .111..11.11.11.11..111.....1.1.11.1.1....
        ..111..11.11.11.11..111.....1.1.11.1.1...
        ...111..11.11.11.11..111.....1.1.11.1.1..
        ....111..11.11.11.11..111.....1.1.11.1.1.
        .....111..11.11.11.11..111.....1.1.11.1.1
        1.....111..11.11.11.11..111.....1.1.11.1.
        .1.....111..11.11.11.11..111.....1.1.11.1
        1.1.....111..11.11.11.11..111.....1.1.11.
        .1.1.....111..11.11.11.11..111.....1.1.11
        """)
        Hx = parse("""
        ...1..11...11111.1.1..1.1.11111...11..1..
        1111...11..1.....1..11...11111.1.1..1.1.1
        111.1.1..1.1.11111...11..1.....1..11...11
        ....1..11...11111.1.1..1.1.11111...11..1.
        11111...11..1.....1..11...11111.1.1..1.1.
        1111.1.1..1.1.11111...11..1.....1..11...1
        .....1..11...11111.1.1..1.1.11111...11..1
        .11111...11..1.....1..11...11111.1.1..1.1
        11111.1.1..1.1.11111...11..1.....1..11...
        1.....1..11...11111.1.1..1.1.11111...11..
        1.11111...11..1.....1..11...11111.1.1..1.
        .11111.1.1..1.1.11111...11..1.....1..11..
        .1.....1..11...11111.1.1..1.1.11111...11.
        .1.11111...11..1.....1..11...11111.1.1..1
        ..11111.1.1..1.1.11111...11..1.....1..11.
        ..1.....1..11...11111.1.1..1.1.11111...11
        1.1.11111...11..1.....1..11...11111.1.1..
        ...11111.1.1..1.1.11111...11..1.....1..11
        1..1.....1..11...11111.1.1..1.1.11111...1
        .1.1.11111...11..1.....1..11...11111.1.1.
        """)
        code = CSSCode(Hz=Hz, Hx=Hx)

    elif argv.code == "qr47":
        H = parse("""
        1...11..11.11..1..1.1..11......................
        11..1.1.1.11.1.11.1111.1.1.....................
        111.1..11.....111111.111..1....................
        11111......11...11.1..1....1...................
        .11111......11...11.1..1....1..................
        1.11..1.11.11111...111.1.....1.................
        11.1.1.11.11.11.1.1..111......1................
        111..11.......1..1111.1........1...............
        .111..11.......1..1111.1........1..............
        1.11.1.1.1.11..11.11.111.........1.............
        11.1.11..111.1.11111..1...........1............
        .11.1.11..111.1.11111..1...........1...........
        1.111..1.1...1...1.1.1.1............1..........
        11.1.....1111.11......11.............1.........
        111..1..111..1..1.1.1.................1........
        .111..1..111..1..1.1.1.................1.......
        ..111..1..111..1..1.1.1.................1......
        ...111..1..111..1..1.1.1.................1.....
        1.....1.1..1.111.11...11..................1....
        11..11.11..1..1.1..11......................1...
        .11..11.11..1..1.1..11......................1..
        ..11..11.11..1..1.1..11......................1.
        ...11..11.11..1..1.1..11......................1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "qr71":
        H = parse("""
        1.1.1.11.1...11..11.....1....1...1111..................................
        1111111.111..1.1.1.1....11...11..1...1.................................
        .1111111.111..1.1.1.1....11...11..1...1................................
        ..1111111.111..1.1.1.1....11...11..1...1...............................
        1.11.1..1..11.1.11..1.1.1..111..1.11....1..............................
        1111...1....1.11.....1.111..1.1...1......1.............................
        .1111...1....1.11.....1.111..1.1...1......1............................
        1..1.111.....1..1.1....11111.11.1111.......1...........................
        111.....11...1....11.....1111111............1..........................
        .111.....11...1....11.....1111111............1.........................
        ..111.....11...1....11.....1111111............1........................
        ...111.....11...1....11.....1111111............1.......................
        ....111.....11...1....11.....1111111............1......................
        1.1.11...1.......1.....1.....1111................1.....................
        .1.1.11...1.......1.....1.....1111................1....................
        ..1.1.11...1.......1.....1.....1111................1...................
        ...1.1.11...1.......1.....1.....1111................1..................
        1.1....11.....1..11..1..1..1.1.......................1.................
        .1.1....11.....1..11..1..1..1.1.......................1................
        ..1.1....11.....1..11..1..1..1.1.......................1...............
        ...1.1....11.....1..11..1..1..1.1.......................1..............
        ....1.1....11.....1..11..1..1..1.1.......................1.............
        .....1.1....11.....1..11..1..1..1.1.......................1............
        ......1.1....11.....1..11..1..1..1.1.......................1...........
        1.1.1.1......1.1.11..1...1..11.1.1.1........................1..........
        1111111..1...1..11.1..1.1.1...1.11.1.........................1.........
        11.1.1...11..1......1..111.1.1.1...1..........................1........
        11.....1.111.1...11..1...11.111.1111...........................1.......
        11..1.11111111...1.1..1.1.11..11................................1......
        .11..1.11111111...1.1..1.1.11..11................................1.....
        ..11..1.11111111...1.1..1.1.11..11................................1....
        ...11..1.11111111...1.1..1.1.11..11................................1...
        ....11..1.11111111...1.1..1.1.11..11................................1..
        1.1.11.1...11..11.....1....1...1111..................................1.
        .1.1.11.1...11..11.....1....1...1111..................................1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "rm_2_5_p":
        H = parse("""
        ...11111111....................
        .11..1111..11..................
        1.1.1.11.1.1.1.................
        11.1..1.11.1..1................
        ...1111........1111............
        .11..11........11..11..........
        1.1.1.1........1.1.1.1.........
        11.1..1.........11.1..1........
        .11111111......11......11......
        1.111111.1.....1.1.....1.1.....
        11.1111.11......11.....1..1....
        111.1111...1...1...1...1...1...
        1111.11.1..1....1..1...1....1..
        11111.1..1.1.....1.1...1.....1.
        111111.111.1...111.1...1......1
        """)
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "to_16_6":  # triorthogonal
        H = parse("""
        ........11111111
        ....1111....1111
        11111111........
        ..11..11..11..11
        .1.1.1.1.1.1.1.1
        1..1.11..11.1..1
        """)  # distance = 4
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "B11":  # Pless 1971, punctured B12
        H = parse("""
        .1111......
        ...1111....
        .....1111..
        .......1111
        1.1.1.1.1.1
        """)
        from qupy.ldpc.gallagher import classical_distance
        print(classical_distance(H))
        code = CSSCode(Hx=H, Hz=H)

    elif argv.code == "glue_classical_self":
        from qupy.ldpc.glue import glue_classical, glue_classical_self
        H = glue_classical_self()
        H = H.copy()
        code = CSSCode(Hx=H, Hz=H)
        #if argv.classical_distance:
        #    from qupy.ldpc.gallagher import classical_distance
        #    print("distance:", classical_distance(H))

    elif argv.code == "randselfdual":
        m = argv.get("m", 4)
        n = argv.get("n", 8)
        rw = argv.get("rw", 4)
        code = randselfdual(m, n, rw)

    else:
        from qupy.ldpc.gallagher import get_code
        code = get_code(argv.code)

    if argv.truncate:
        idx = argv.truncate
        Hx = Hx[:idx]
        Hz = Hz[:idx]

    for arg in argv:
        if arg.endswith('.ldpc'):
            code = CSSCode.load(arg,
                                build=build,
                                check=check,
                                rebuild=argv.rebuild)

            if argv.rebuild:
                code.save(arg)

            break

    if code is None:
        code = CSSCode(Lx,
                       Lz,
                       Hx,
                       Tz,
                       Hz,
                       Tx,
                       build=build,
                       check=check,
                       verbose=verbose,
                       logops_only=logops_only)

    if argv.dual:
        print("dual code...")
        code = code.dual(build=build)

    # take several copies of the code..
    mul = argv.get("mul", 1)
    code = mul * code

    if argv.classical_product:
        H1 = code.Hx
        H2 = H1.transpose()
        Hx, Hz = hypergraph_product(H1, H2)
        code = CSSCode(Hx=Hx, Hz=Hz)

    if argv.product:

        codes = code.product(code.dual())

        for _code in codes:
            print(_code)
            if _code.k:
                _code.save(stem="prod")

    if argv.verbose != 0:
        print(code)
        #print code.longstr()
        #print code.weightstr()
        print(code.weightsummary())

    if argv.shorten:
        code.shorten()
        print(code)
        print(code.weightsummary())

    if argv.prune:
        print("pruning:", argv.prune)
        code.prune_xlogops(argv.prune)
        print(code)
        print(code.weightsummary())

    if argv.split:

        for i in range(4):
            code = x_split(code, build=False)
            print(code)
            print(code.weightsummary())
            code = code.dual()
            code = x_split(code, build=False)
            code = code.dual()
            print(code)
            print(code.weightsummary())
            code.save(stem="split")

    if argv.save:
        code.save(argv.save)

    if argv.symplectic:
        i = randint(0, code.mz - 1)
        j = randint(0, code.k - 1)
        code.Lz[j] += code.Hz[i]
        code.Lz[j] %= 2
        code.Tx[i] -= code.Lx[j]
        code.Tx[i] %= 2
        code.do_check()

        return

    if argv.showcode:
        print(code.longstr())

    if argv.todot:
        todot(code.Hz)
        return

    if argv.tanner:
        Hx = code.Hx
        graph = Tanner(Hx)
        #graph.add_dependent()

        depth = 3

        graphs = [graph]
        for i in range(depth):
            _graphs = []
            for g in graphs:
                left, right = g.split()
                _graphs.append(left)
                _graphs.append(right)
            graphs = _graphs
        print("split", graphs)

        k = code.Lx.shape[0]
        op = code.Lx[1]
        #op = (op + code.Tx[20])%2
        print(strop(op), op.sum())
        print()
        for i in range(Hx.shape[0]):
            if random() <= 0.5:
                op = (op + Hx[i]) % 2
        #print shortstr(op), op.sum()

        print(strop(op), op.sum())
        print()

        #for graph in [left, right]:
        for graph in graphs * 2:

            #op = graph.minimize(op, verbose=True)
            op = graph.localmin(op, verbose=True)
            print(strop(op), op.sum())
            print()

        #op = graph.localmin(op)
        #print strop(op), op.sum()
        #print
        #print shortstr(op), op.sum()

        return

    if argv.distance == 'star':
        decoder = StarDynamicDistance(code)
        L = decoder.find(verbose=verbose)
        print(shortstr(L))
        print("distance <=", L.sum())
    elif argv.distance == 'stab':
        d = random_distance_stab(code)
        print("distance <=", d)
    elif argv.distance == 'pair':
        d = pair_distance(code)
        print("distance <=", d)
    elif argv.distance == 'free':
        d = free_distance(code)
        print("distance <=", d)
    elif argv.distance == 'lookup':
        d = lookup_distance(code)
        if d <= 4:
            print("distance =", d)
        else:
            print("distance <=", d)

    if type(argv.distance) == str:
        return

    if argv.get('exec'):

        exec(argv.get('exec'))

    N = argv.get('N', 0)
    p = argv.get('p', 0.01)
    weight = argv.weight

    #assert code.Tx is not None, "use code.build ?"

    decoder = get_decoder(argv, argv.decode, code)
    if decoder is None:
        return

    if argv.whack:
        whack(code, decoder, p, N, argv.get("C0", 10),
              argv.get("error_rate", 0.05), argv.get("mC", 1.2), verbose, argv)
        return

    if argv.noerr:
        print("redirecting stderr to stderr.out")
        fd = os.open("stderr.out", os.O_CREAT | os.O_WRONLY)
        os.dup2(fd, 2)

    decoder.strop = strop
    print("decoder:", decoder.__class__.__name__)

    n_ranks = numpy.zeros((code.n, ), dtype=numpy.float64)
    n_record = []
    k_ranks = numpy.zeros((code.k, ), dtype=numpy.float64)
    k_record = []

    failures = open(argv.savefail, 'w') if argv.savefail else None

    if argv.loadfail:
        loadfail = open(argv.loadfail)
        errs = loadfail.readlines()
        N = len(errs)

    newHx = []
    newHz = []

    distance = code.n
    count = 0
    failcount = 0
    nonuniq = 0

    if argv.weight1:
        # run through all weight=1 errors
        N = code.n

    if argv.weight2:
        # run through all weight=1 errors
        N = code.n**2

    for i in range(N):

        # We use Hz to look at X type errors (bitflip errors)

        if argv.loadfail:
            err_op = parse(errs[i])
            err_op.shape = (code.n, )
        elif argv.weight1:
            err_op = zeros2(code.n)
            err_op[i % code.n] = 1
        elif argv.weight2:
            err_op = zeros2(code.n)
            ai = i % code.n
            bi = (i // code.n)
            err_op[ai] = 1
            err_op[bi] = 1

        elif weight is not None:
            err_op = zeros2(code.n)
            r = 0
            while r < weight:
                idx = randint(0, code.n - 1)
                if err_op[idx] == 0:
                    err_op[idx] = 1
                    r += 1
            #print err_op
        else:
            err_op = ra.binomial(1, p, (code.n, ))
            err_op = err_op.astype(numpy.int32)

#        err_op = parse("..............................")
#        err_op.shape = (err_op.shape[1],)
        write(str(err_op.sum()))
        #print err_op.shape

        s = dot2(code.Hz, err_op)
        write(":s%d:" % s.sum())

        op = decoder.decode(p, err_op, verbose=verbose, argv=argv)

        c = 'F'
        success = False
        if op is not None:
            op = (op + err_op) % 2
            # Should be a codeword of Hz (kernel of Hz)
            if dot2(code.Hz, op).sum() != 0:
                print(dot2(code.Hz, op))
                print("\n!!!!!  BUGBUG  !!!!!", sparsestr(err_op))
                continue
            write("%d:" % op.sum())

            #print "is_stab:"
            #print strop(op)
            # Are we in the image of Hx ? If so, then success.
            #success = code.is_stab(op)
            success = dot2(code.Lz, op).sum() == 0

            if success and op.sum():
                nonuniq += 1
            #    print "\n", shortstr(err_op)
            #    return

            c = '.' if success else 'x'

            if argv.k_rank:

                # XX this does not work very well...

                a = dot2(code.Lz, op)
                assert (a.sum() == 0) == success

                if not success:
                    #r = -1. // (a.sum()**0.5) # sqrt ??
                    r = -1. / a.sum()
                    k_ranks += r * a
                else:
                    #r = 1. / (code.k**0.5)
                    r = 1. / code.k
                    k_ranks += r * a

                k_record.append((a, success))

            if op.sum() and not success:
                distance = min(distance, op.sum())
                #if op.sum() == 2:
                #    print()
                #    print("main:")
                #    print(shortstr(op))
                #    print()
                #    print(strop(op))

                if argv.minop and argv.minop >= op.sum():
                    a = dot2(code.Lz, op)
                    print()
                    print(sparsestr(a))

            if not success and argv.addstabs and op.sum() <= argv.addstabs:
                #write("%d"%op.sum())
                print((sparsestr(op)))
                newHx.append(op)

                A = numpy.concatenate((code.Lx, code.Hx))
                c = solve.solve(A.transpose(), op.transpose()).transpose()
                cL = c[:code.k]
                zstab = dot2(cL, code.Lz)
                print(shortstr(zstab))
                graph = Tanner(code.Hz)
                zstab = graph.minimize(zstab, target=8, verbose=True)
                print(shortstr(zstab))
                newHz.append(zstab)
                break


#                Hz, Hx = code.Hz, append2(code.Hx, op)
#                #if len(Hz) < len(Hx):
#                #    Hx, Hz = Hz, Hx
#                print Hx.shape, Hz.shape
#                code = CSSCode(Hx=Hx, Hz=Hz)
#                if len(Hz) < len(Hx):
#                    code = code.dual()
#                    decoder = get_decoder(argv, argv.decode, code)
#                print
#                print code
#                print code.weightsummary()
#                code.save("addstabs_%d_%d_%d.ldpc"%(code.n, code.k, code.distance))

            if not success and argv.showfail:
                print()
                print("FAIL:")
                print(shortstr(err_op))

        else:
            failcount += 1

            if failures:
                print(shortstr(err_op), file=failures)
                failures.flush()

        if argv.n_rank:
            r = 2. * int(success) - 1
            #print "r =", r
            if err_op.sum():
                r /= err_op.sum()
                #print r
                #print r*err_op
                n_ranks += r * err_op
                n_record.append((err_op, success))

        write(c + ' ')
        count += success

    if hasattr(decoder, 'fini'):
        decoder.fini()

    if N:
        print()
        print(datestr)
        print(argv)
        print("error rate = %.8f" % (1. - 1. * count / (i + 1)))
        print("fail rate = %.8f" % (1. * failcount / (i + 1)))
        print("nonuniq = %d" % nonuniq)
        print("distance <= %d" % distance)

    if argv.n_rank:
        #n_ranks //= N
        n_ranks = list(enumerate(n_ranks))
        n_ranks.sort(key=lambda item: -item[1])
        #print [r[0] for r in n_ranks]
        print(' '.join('%d:%.2f' % r for r in n_ranks))
        #print min(r[1] for r in n_ranks)
        #print max(r[1] for r in n_ranks)
        A = numpy.array([rec[0] for rec in n_record])
        b = numpy.array([rec[1] for rec in n_record])
        print(A.shape, b.shape)
        sol = lstsq(A, b)
        x, res, rk, s = sol
        #print x
        for i, val in enumerate(x):
            if val < 0:
                print(i, end=' ')
        print()

    if argv.k_rank:
        #k_ranks //= N
        k_ranks = list(enumerate(k_ranks))
        k_ranks.sort(key=lambda item: -item[1])
        #print [r[0] for r in k_ranks]
        print(' '.join('%d:%.2f' % r for r in k_ranks))
        #print ' '.join(str(r) for r in k_ranks)
        #print min(r[1] for r in k_ranks)
        #print max(r[1] for r in k_ranks)
        A = numpy.array([rec[0] for rec in k_record])
        b = numpy.array([rec[1] for rec in k_record])
        #print A.shape, b.shape
        sol = lstsq(A, b)
        x, res, rk, s = sol
        #print x
        xs = list(enumerate(x))
        xs.sort(key=lambda item: item[1])
        print(' '.join('%d:%.2f' % item for item in xs))

    if argv.addstabs and newHz:
        Hz = append2(code.Hz, newHz[0])
        code = CSSCode(Hx=code.Hx, Hz=Hz)
        code.save(stem="addstabs")
        print(code)
        print(code.weightsummary())

    elif argv.addstabs and newHx:  # and newHx.shape[0]>code.Hx.shape[0]:
        newHx = array2(newHx)
        newHx = numpy.concatenate((code.Hx, newHx))
        #print shortstr(newHx)
        #print
        Hx = solve.linear_independent(newHx)
        #print shortstr(Hx)
        #print
        code = CSSCode(Hx=Hx, Hz=code.Hz)
        code.save(stem="addstabs")
        print(code)
        print(code.weightsummary())
Esempio n. 6
0
def whack(code, decoder, p, N, C0, error_rate, mC, verbose, argv):
    """keep decoding until we get below error_rate"""

    errors = []
    succeeds = []  # put error ops here when we decode them
    fails = []  # if the decoder is wrong

    for i in range(N):
        err_op = ra.binomial(1, p, (code.n, ))
        err_op = err_op.astype(numpy.int32)
        errors.append(err_op)

    target_succeed = (1. - error_rate) * N

    i = 0
    C = C0

    while len(succeeds) < target_succeed and len(succeeds) + len(
            errors) >= target_succeed:

        err_op = errors[i]

        # We use Hz to look at X type errors (bitflip errors)

        write(str(err_op.sum()))

        s = dot2(code.Hz, err_op)
        write(":s%d:" % s.sum())

        op = decoder.decode(p, err_op, C=C, verbose=verbose, argv=argv)

        c = 'F'
        success = False
        if op is None:
            print(i, "TRY AGAIN")
            i = i + 1

        else:
            op = (op + err_op) % 2
            # Should be a codeword of Hz (kernel of Hz)
            assert dot2(code.Hz, op).sum() == 0
            write("%d:" % op.sum())

            success = code.is_stab(op)
            c = '.' if success else 'x'

            errors.pop(i)

            if success:
                print(i, "GOOD")
                succeeds.append(err_op)
            else:
                print(i, "BAD")
                fails.append(err_op)

        if i == len(errors):
            i = 0
            C = int(ceil(C * mC))
            print(("C = ", C))

        write(c + ' ')

        print("errors = ", len(errors), "succeeds =", len(succeeds), "fails =",
              len(fails))

    if len(succeeds) >= target_succeed:
        print("SUCCESS")

    else:
        assert len(succeeds) + len(errors) < target_succeed
        print("FAIL")

    print()
    print(datestr)
    print(argv)
    print("error rate = %.8f" % (1. * (len(errors) + len(fails)) / N))
    print("fail rate = %.8f" % (1. * len(fails) / N))
Esempio n. 7
0
def main():

    l = argv.get('l', 8)
    li = argv.get('li', l)
    lj = argv.get('lj', l)
    si = argv.get('si', 0)
    sj = argv.get('sj', 0)

    toric = Toric2D(li, lj, si, sj)
    Hx, Hz = toric.Hx, toric.Hz
    strop = toric.strop
    #print("Hx:")
    #print(shortstr(Hx))
    #print("Lx:")
    #print(shortstr(toric.Lx))
    code = CSSCode(Hx=Hx, Hz=Hz, Lx=toric.Lx, Lz=toric.Lz)

    print(code)
    print(code.Lx)

    decoder = ClusterCSSDecoder(2, code.Hx, code.Hz)

    N = argv.get("N", 0)
    p = argv.get("p", 0.05)
    verbose = argv.verbose

    distance = code.n
    count = 0
    failcount = 0
    nonuniq = 0

    total = numpy.array([0.] * code.k)

    for trial in range(N):

        err_op = ra.binomial(1, p, (code.n, ))
        err_op = err_op.astype(numpy.int32)

        write(str(err_op.sum()))
        #print err_op.shape

        s = dot2(code.Hz, err_op)
        write(":s%d:" % s.sum())

        op = decoder.decode(p, err_op, verbose=verbose, argv=argv)

        c = 'F'
        success = False
        result = numpy.array([1] * code.k)
        if op is not None:
            op = (op + err_op) % 2
            # Should be a codeword of Hz (kernel of Hz)
            if dot2(code.Hz, op).sum() != 0:
                print(dot2(code.Hz, op))
                print("\n!!!!!  BUGBUG  !!!!!", sparsestr(err_op))
                continue
            write("%d:" % op.sum())

            # Are we in the image of Hx ? If so, then success.
            result = dot2(code.Lz, op)
            success = result.sum() == 0

            #print(result, end=" ")

            if success and op.sum():
                nonuniq += 1
            #    print "\n", shortstr(err_op)
            #    return

            c = '.' if success else 'x'

            if op.sum() and not success:
                distance = min(distance, op.sum())

        else:
            failcount += 1

            if failures:
                print(shortstr(err_op), file=failures)
                failures.flush()

        total += result

        write(c + ' ')
        count += success

    if N:
        print()
        print(datestr)
        print(argv)
        print("error rate = %.8f" % (1. - 1. * count / (trial + 1)))
        print("fail rate = %.8f" % (1. * failcount / (trial + 1)))
        print("nonuniq = %d" % nonuniq)
        print("distance <= %d" % distance)
        total = total / (trial + 1)
        print("logop errors = [%s]" % ', '.join(str(x) for x in total))
Esempio n. 8
0
def main():

    name = argv.get("G", "icosa")
    G = groups.build(name)

    def get_reflects(G, I):
        reflects = []
        count = 0
        for ops in cross((G, ) * degree):
            op = reduce(matmul, ops)
            if op * op == I:
                count += 1
                reflects.append(op)
        reflects.remove(I)
        reflects.remove(nI)
        return reflects

    def rand_reflect(G, I, degree, weight=None):
        if weight is None:
            weight = degree
        while 1:
            #ops = [choice(G) for i in range(degree)]
            idxs = list(range(degree))
            ops = [G.get_ident() for i in idxs]
            for j in range(weight):
                idx = choice(idxs)
                idxs.remove(idx)
                ops[idx] = choice(G.non_central)
            op = reduce(matmul, ops)
            if op * op == I and op != I and op.phase == 1:
                return op

    def mk_stab(reflects):
        # build commutative subgroup from these
        size = 0
        for trials in range(100):
            remain = list(reflects)
            gen = []
            S = []
            while remain:
                idx = randint(0, len(remain) - 1)
                a = remain.pop(idx)
                for b in gen:
                    if a * b != b * a:
                        break
                else:
                    if a not in S:
                        S1 = mulclose(gen + [a])
                        if nI not in S1:
                            S = S1
                            gen.append(a)

            if len(S) > size:
                #print("|S| =", len(S))
                size = len(S)

        for op in S:
            assert op * op == I
        return gen, S

    print("|G| =", len(G))
    print("building...", end="", flush=True)
    G = Group(G)
    print("done")

    degree = argv.get("degree", 2)
    weight = argv.get("weight", degree)

    def build_spin_chain(G):
        I = G.get_ident()
        In = G.get_ident(degree)
        nt_ops = [op for op in G if op != I and op.phase == 1]
        while 1:
            while 1:
                A = [I] * degree
                B = [I] * degree

                for i in range(weight):
                    a = choice(nt_ops)
                    A[i] = a
                    B[(i + 1) % degree] = a
                A = reduce(matmul, A)
                B = reduce(matmul, B)
                if A * B == B * A:
                    break

            gen = [A, B]
            for i in range(2, degree):
                idxs = [A.idxs[(-i + j) % degree] for j in range(degree)]
                op = Tensor(G, idxs, A.phase)
                gen.append(op)
            print("gen:")
            for op in gen:
                print("  ", op)

            S = mulclose(gen)
            print("|S| =", len(S))

            #ops = [G.get_dense(op) for op in S]
            #P = reduce(add, ops)
            P = G.get_dense(S[0])
            for op in S[1:]:
                P = P + G.get_dense(op)
            r = P.norm()
            if abs(r) > EPSILON:
                break
            write(".")

        show_spec(P)
        find_errors(G, P, degree)
        return

    I = G.get_ident(degree)
    nI = -I

    n_reflects = argv.get("reflects", 4)

    reflects = []
    while 1:
        reflects += [
            rand_reflect(G, I, degree, weight) for i in range(n_reflects)
        ]

        if 0:
            #print("reflects:")
            idxs = set()
            for op in reflects:
                for idx in op.idxs:
                    idxs.add(idx)
            idxs = list(idxs)
            idxs.sort()
            ops = [G[idx] for idx in idxs]
            H = mulclose(ops)
            print("reflects:", idxs)
            print("|H|:", len(H))

        gen, S = mk_stab(reflects)
        write("%s," % len(S))
        if len(S) >= 2**degree:
            break
    print()
    print("gen:")
    for op in gen:
        print("  ", op)

    gen.pop(0)
    S = mulclose(gen)

    # build projector onto codespace
    ops = [G.get_dense(op) for op in S]
    P = reduce(add, ops)
    show_spec(P)

    find_errors(G, P, degree)