Esempio n. 1
0
def test_QobjUnitaryOper():
    "Qobj unitarity"
    # Check some standard operators
    Sx = sigmax()
    Sy = sigmay()
    assert_unitarity(qeye(4), True)
    assert_unitarity(Sx, True)
    assert_unitarity(Sy, True)
    assert_unitarity(sigmam(), False)
    assert_unitarity(destroy(10), False)
    # Check multiplcation of unitary is unitary
    assert_unitarity(Sx * Sy, True)
    # Check some other operations clear unitarity
    assert_unitarity(Sx + Sy, False)
    assert_unitarity(4 * Sx, False)
    assert_unitarity(Sx * 4, False)
    assert_unitarity(4 + Sx, False)
    assert_unitarity(Sx + 4, False)
Esempio n. 2
0
def test_QobjUnitaryOper():
    "Qobj unitarity"
    # Check some standard operators
    Sx = sigmax()
    Sy = sigmay()
    assert_unitarity(qeye(4), True, "qeye(4) should be unitary.")
    assert_unitarity(Sx, True, "sigmax() should be unitary.")
    assert_unitarity(Sy, True, "sigmax() should be unitary.")
    assert_unitarity(sigmam(), False, "sigmam() should NOT be unitary.")
    assert_unitarity(destroy(10), False, "destroy(10) should NOT be unitary.")
    # Check multiplcation of unitary is unitary
    assert_unitarity(Sx*Sy, True, "sigmax()*sigmay() should be unitary.")
    # Check some other operations clear unitarity
    assert_unitarity(Sx+Sy, False, "sigmax()+sigmay() should NOT be unitary.")
    assert_unitarity(4*Sx, False, "4*sigmax() should NOT be unitary.")
    assert_unitarity(Sx*4, False, "sigmax()*4 should NOT be unitary.")
    assert_unitarity(4+Sx, False, "4+sigmax() should NOT be unitary.")
    assert_unitarity(Sx+4, False, "sigmax()+4 should NOT be unitary.")
Esempio n. 3
0
def test_QobjUnitaryOper():
    "Qobj unitarity"
    # Check some standard operators
    Sx = sigmax()
    Sy = sigmay()
    assert_unitarity(qeye(4), True, "qeye(4) should be unitary.")
    assert_unitarity(Sx, True, "sigmax() should be unitary.")
    assert_unitarity(Sy, True, "sigmax() should be unitary.")
    assert_unitarity(sigmam(), False, "sigmam() should NOT be unitary.")
    assert_unitarity(destroy(10), False, "destroy(10) should NOT be unitary.")
    # Check multiplcation of unitary is unitary
    assert_unitarity(Sx*Sy, True, "sigmax()*sigmay() should be unitary.")
    # Check some other operations clear unitarity
    assert_unitarity(Sx+Sy, False, "sigmax()+sigmay() should NOT be unitary.")
    assert_unitarity(4*Sx, False, "4*sigmax() should NOT be unitary.")
    assert_unitarity(Sx*4, False, "sigmax()*4 should NOT be unitary.")
    assert_unitarity(4+Sx, False, "4+sigmax() should NOT be unitary.")
    assert_unitarity(Sx+4, False, "sigmax()+4 should NOT be unitary.")
Esempio n. 4
0
    def testOperatorListStateList(self):
        """
        expect: operator list and state list
        """
        operators = [sigmax(), sigmay(), sigmaz(), sigmam(), sigmap()]
        states = [fock(2, 0), fock(2, 1), fock_dm(2, 0), fock_dm(2, 1)]
        res = expect(operators, states)

        assert_(len(res) == len(operators))

        for r_idx, r in enumerate(res):

            assert_(isinstance(r, np.ndarray))

            if operators[r_idx].isherm:
                assert_(r.dtype == np.float64)
            else:
                assert_(r.dtype == np.complex128)

            for s_idx, s in enumerate(states):
                assert_(r[s_idx] == expect(operators[r_idx], states[s_idx]))
Esempio n. 5
0
    def testOperatorListStateList(self):
        """
        expect: operator list and state list
        """
        operators = [sigmax(), sigmay(), sigmaz(), sigmam(), sigmap()]
        states = [fock(2, 0), fock(2, 1), fock_dm(2, 0), fock_dm(2, 1)]
        res = expect(operators, states)

        assert_(len(res) == len(operators))

        for r_idx, r in enumerate(res):

            assert_(isinstance(r, np.ndarray))

            if operators[r_idx].isherm:
                assert_(r.dtype == np.float64)
            else:
                assert_(r.dtype == np.complex128)

            for s_idx, s in enumerate(states):
                assert_(r[s_idx] == expect(operators[r_idx], states[s_idx]))
Esempio n. 6
0
    def testExpectSolverCompatibility(self):
        """
        expect: operator list and state list
        """
        c_ops = [0.0001 * sigmaz()]
        e_ops = [sigmax(), sigmay(), sigmaz(), sigmam(), sigmap()]
        times = np.linspace(0, 10, 100)

        res1 = mesolve(sigmax(), fock(2, 0), times, c_ops, e_ops)
        res2 = mesolve(sigmax(), fock(2, 0), times, c_ops, [])

        e1 = res1.expect
        e2 = expect(e_ops, res2.states)

        assert_(len(e1) == len(e2))

        for n in range(len(e1)):
            assert_(len(e1[n]) == len(e2[n]))
            assert_(isinstance(e1[n], np.ndarray))
            assert_(isinstance(e2[n], np.ndarray))
            assert_(e1[n].dtype == e2[n].dtype)
            assert_(all(abs(e1[n] - e2[n]) < 1e-12))
Esempio n. 7
0
    def testExpectSolverCompatibility(self):
        """
        expect: operator list and state list
        """
        c_ops = [0.0001 * sigmaz()]
        e_ops = [sigmax(), sigmay(), sigmaz(), sigmam(), sigmap()]
        times = np.linspace(0, 10, 100)

        res1 = mesolve(sigmax(), fock(2, 0), times, c_ops, e_ops)
        res2 = mesolve(sigmax(), fock(2, 0), times, c_ops, [])

        e1 = res1.expect
        e2 = expect(e_ops, res2.states)

        assert_(len(e1) == len(e2))

        for n in range(len(e1)):
            assert_(len(e1[n]) == len(e2[n]))
            assert_(isinstance(e1[n], np.ndarray))
            assert_(isinstance(e2[n], np.ndarray))
            assert_(e1[n].dtype == e2[n].dtype)
            assert_(all(abs(e1[n] - e2[n]) < 1e-12))