Esempio n. 1
0
def gen_basis_vectors(n, dims, choice):
    vectors = []
    basic_states = []
    bits = int(math.log(n, 2))
    #for i in range(n):
    #state=qt.basis(n,i)
    #fock_states.append(state)
    q = rabbit(bits, [], 0)
    basic_states.append(q)
    q = rabbit(bits, [1], 0)
    basic_states.append(q)
    q = rabbit(bits, [n - 1], 0)
    basic_states.append(q)
    indexvec = []
    for i in range(bits):
        indexvec.append(i)
    q = rabbit(bits, indexvec, 1)
    basic_states.append(q)
    test_opt1 = [
        basic_states[0], basic_states[1], basic_states[2], basic_states[3]
    ]
    test_opt2 = [
        basic_states[0], basic_states[1], basic_states[2], basic_states[3],
        basic_states[-1] + basic_states[1]
    ]
    if choice == 1:  #Basis states
        vectors = basic_states
        q = qt.Qobj(np.ones(n))
        q = q.unit()
        vectors.append(q)
        vectors.append(state)  #there is no two for now
    elif choice == 2:
        vectors = basic_states
    elif choice == 3:  #Hadamard option 1
        h = tensor_fix(qt.hadamard_transform(bits))
        for state in basic_states:
            state_n = h * state
            state_n = state_n.unit()
            vectors.append(state_n)
    elif choice == 4:  #QFT option 1
        quft = tensor_fix(qft.qft(bits))
        for state in basic_states:
            state_n = quft * state
            state_n = state_n.unit()
            vectors.append(state_n)
    elif choice == 5:  #Hadamard option 2
        h = tensor_fix(qt.hadamard_transform(bits))
        for state in basic_states:
            state_n = h * state
            state_n = state_n.unit()
            vectors.append(state_n)
    elif choice == 6:  #QFT option 2
        quft = tensor_fix(qft.qft(bits))
        for state in basic_states:
            state_n = quft * state
            state_n = state_n.unit()
            vectors.append(state_n)
        vectors.append(state_n)
    return vectors
Esempio n. 2
0
def gen_basis_vectors(n,dims,choice):
    vectors=[]
    fock_states=[]
    bits=int(math.log(n,2))
    q=rabbit(bits,[],0)
    basic_states.append(q)
    q=rabbit(bits,[1],0)
    basic_states.append(q)
    q=rabbit(bits,[n-1],0)
    basic_states.append(q)
    indexvec=[]
    for i in range(bits):
        indexvec.append(i)
    q=rabbit(bits,indexvec,1)
    basic_states.append(q)
    if choice == 1: #Unused psuedo-Basis states
        vectors = basis_states
        q=qt.Qobj(np.ones(n))
        q=q.unit()
        vectors.append(q)
        vectors.append(state) 
    elif choice ==2: #true basis states
        vectors=basic_states
    elif choice == 3: #Hadamard option 1
        h=tensor_fix(qt.hadamard_transform(bits))
        for state in basic_states:
            state_n=h*state
            state_n=state_n.unit()
            vectors.append(state_n)
    elif choice == 4: #QFT option 1
        quft=tensor_fix(qft.qft(bits))
        for state in basis_states:
            state_n=quft*state
            state_n=state_n.unit()
            vectors.append(state_n)
    elif choice == 5: #Hadamard option 2
        h=tensor_fix(qt.hadamard_transform(bits))
        for state in basis_states:
            state_n=h*state
            state_n=state_n.unit()
            vectors.append(state_n)
    elif choice == 6: #QFT option 2
        quft=tensor_fix(qft.qft(bits))
        for state in basis_states:
            state_n=quft*state
            state_n=state_n.unit()
            vectors.append(state_n)
        vectors.append(state_n)
    return vectors
    def test_02_2_qft_bounds(self):
        """
        control.pulseoptim: QFT gate with linear initial pulses (bounds)
        assert that amplitudes remain in bounds
        """
        Sx = sigmax()
        Sy = sigmay()
        Sz = sigmaz()
        Si = 0.5*identity(2)

        H_d = 0.5*(tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
        H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
        U_0 = identity(4)
        # Target for the gate evolution - Quantum Fourier Transform gate
        U_targ = qft.qft(2)

        n_ts = 10
        evo_time = 10

        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ,
                        n_ts, evo_time,
                        fid_err_targ=1e-9,
                        amp_lbound=-1.0, amp_ubound=1.0,
                        init_pulse_type='LIN',
                        gen_stats=True)
        assert_((result.final_amps >= -1.0).all() and
                    (result.final_amps <= 1.0).all(),
                    msg="Amplitude bounds exceeded for QFT")
Esempio n. 4
0
    def test_02_2_qft_bounds(self):
        """
        control.pulseoptim: QFT gate with linear initial pulses (bounds)
        assert that amplitudes remain in bounds
        """
        Sx = sigmax()
        Sy = sigmay()
        Sz = sigmaz()
        Si = 0.5 * identity(2)

        H_d = 0.5 * (tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
        H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
        U_0 = identity(4)
        # Target for the gate evolution - Quantum Fourier Transform gate
        U_targ = qft.qft(2)

        n_ts = 10
        evo_time = 10

        result = cpo.optimize_pulse_unitary(H_d,
                                            H_c,
                                            U_0,
                                            U_targ,
                                            n_ts,
                                            evo_time,
                                            fid_err_targ=1e-9,
                                            amp_lbound=-1.0,
                                            amp_ubound=1.0,
                                            init_pulse_type='LIN',
                                            gen_stats=True)
        assert_((result.final_amps >= -1.0).all()
                and (result.final_amps <= 1.0).all(),
                msg="Amplitude bounds exceeded for QFT")
Esempio n. 5
0
 def testQFTComparison(self):
     """
     qft: compare qft and product of qft steps
     """
     for N in range(1, 5):
         U1 = qft(N)
         U2 = gate_sequence_product(qft_steps(N))
         assert_((U1 - U2).norm() < 1e-12)
Esempio n. 6
0
 def testQFTComparison(self):
     """
     qft: compare qft and product of qft steps
     """
     for N in range(1, 5):
         U1 = qft(N)
         U2 = gate_sequence_product(qft_steps(N))
         assert_((U1 - U2).norm() < 1e-12)
Esempio n. 7
0
    def test_02_1_qft(self):
        """
        control.pulseoptim: QFT gate with linear initial pulses
        assert that goal is achieved and fidelity error is below threshold
        """
        Sx = sigmax()
        Sy = sigmay()
        Sz = sigmaz()
        Si = 0.5 * identity(2)

        H_d = 0.5 * (tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
        H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
        U_0 = identity(4)
        # Target for the gate evolution - Quantum Fourier Transform gate
        U_targ = qft.qft(2)

        n_ts = 10
        evo_time = 10

        result = cpo.optimize_pulse_unitary(H_d,
                                            H_c,
                                            U_0,
                                            U_targ,
                                            n_ts,
                                            evo_time,
                                            fid_err_targ=1e-9,
                                            init_pulse_type='LIN',
                                            gen_stats=True)

        assert_(result.goal_achieved,
                msg="QFT goal not achieved. "
                "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
        assert_almost_equal(result.fid_err,
                            0.0,
                            decimal=7,
                            err_msg="QFT infidelity too high")

        # check bounds
        result2 = cpo.optimize_pulse_unitary(H_d,
                                             H_c,
                                             U_0,
                                             U_targ,
                                             n_ts,
                                             evo_time,
                                             fid_err_targ=1e-9,
                                             amp_lbound=-1.0,
                                             amp_ubound=1.0,
                                             init_pulse_type='LIN',
                                             gen_stats=True)
        assert_((result2.final_amps >= -1.0).all()
                and (result2.final_amps <= 1.0).all(),
                msg="Amplitude bounds exceeded for QFT")
Esempio n. 8
0
    def execute(self, v):
        N = v.shape[0]
        n = int(math.log(N, 2))
        F = qft(n)
        F = F.full(
        )  # To change the shape and distribution in order to be able to operate
        F = qutip.Qobj(F)

        result = (F * v).full()
        np.around(result, 5, result)
        r = qutip.Qobj(result)

        self.memory_spent = get_mem_used()

        return r
    def test_02_1_qft(self):
        """
        control.pulseoptim: QFT gate with linear initial pulses
        assert that goal is achieved and fidelity error is below threshold
        """
        Sx = sigmax()
        Sy = sigmay()
        Sz = sigmaz()
        Si = 0.5*identity(2)

        H_d = 0.5*(tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
        H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
        U_0 = identity(4)
        # Target for the gate evolution - Quantum Fourier Transform gate
        U_targ = qft.qft(2)

        n_ts = 10
        evo_time = 10

        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ,
                        n_ts, evo_time,
                        fid_err_targ=1e-9,
                        init_pulse_type='LIN',
                        gen_stats=True)

        assert_(result.goal_achieved, msg="QFT goal not achieved. "
                    "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
        assert_almost_equal(result.fid_err, 0.0, decimal=7,
                            err_msg="QFT infidelity too high")

        # check bounds
        result2 = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ,
                        n_ts, evo_time,
                        fid_err_targ=1e-9,
                        amp_lbound=-1.0, amp_ubound=1.0,
                        init_pulse_type='LIN',
                        gen_stats=True)
        assert_((result2.final_amps >= -1.0).all() and
                    (result2.final_amps <= 1.0).all(),
                    msg="Amplitude bounds exceeded for QFT")
Esempio n. 10
0
 def test (self):
     print("Testing " + self.implementation + "\n\n")
     from qutip.qip.algorithms.qft import qft
     
     for n in range (c_min_q_t, c_max_q_t):
         print("\t- {0:2d} qubits".format(n))
         
         #v = ket(0, n)
         v = random_ket (n)
         
         f1 = qft(n)
         f1 = f1.full()            # To change the shape and distribution in order to be able to operate
         f1 = qutip.Qobj(f1)
     
         f1v = (f1 * v).full()
         np.around (f1v, 5, f1v)
     
         f1v = qutip.Qobj(f1v)
         
         f2v = self.execute(v)
         
         if (f1v != f2v):
             print ("Error with the operation for {0:2} qubit(s). Expected result and obstained result doesn't match".format(n))
             
             if (c_verbose):
                 print ("\n\n\t-Input:\n{0}\n\n\t-Expected:\n{1}\n\n\t-Obtained:\n{2}".format(v, f1v, f2v))
                 
                 if c_raise:
                     N = 2**n
                     for j in range (N):
                         if f1v[j,0] != f2v[j,0]:
                             print ("posicion {0} tiene valor {1} pero se esperaba {2}".format(j, f1v[j,0], f2v[j,0]))
                 
             return True
         else:
             print("\t\t\t-> Succeded")
             
     return False
# Drift Hamiltonian
H_d = 0.5 * (tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
print("drift {}".format(H_d))
# The (four) control Hamiltonians
H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
j = 0
for c in H_c:
    j += 1
    print("ctrl {} \n{}".format(j, c))

n_ctrls = len(H_c)
# start point for the gate evolution
U_0 = tensor(identity(2), identity(2))
print("U_0 {}".format(U_0))
# Target for the gate evolution - Quantum Fourier Transform gate
U_targ = (qft.qft(2)).tidyup()
#U_targ.dims = U_0.dims
print("target {}".format(U_targ))

print("Check unitary (should be I) {}".format(U_targ.dag() * U_targ))

# ***** Define time evolution parameters *****
# Number of time slots
n_ts = 10
# Time allowed for the evolution
evo_time = 10

# ***** Define the termination conditions *****
# Fidelity error target
fid_err_targ = 1e-14
# Maximum iterations for the optisation algorithm
Esempio n. 12
0
                   controls=[_sx],
                   initial=_si,
                   target=_hadamard,
                   kwargs=_hadamard_kwargs)

# Quantum Fourier transform.
_qft_system = 0.5 * sum(qutip.tensor(op, op) for op in (_sx, _sy, _sz))
_qft_controls = [0.5*qutip.tensor(_sx, _si), 0.5*qutip.tensor(_sy, _si),
                 0.5*qutip.tensor(_si, _sx), 0.5*qutip.tensor(_si, _sy)]
_qft_kwargs = {'num_tslots': 10, 'evo_time': 10, 'gen_stats': True,
               'init_pulse_type': 'LIN', 'fid_err_targ': 1e-9,
               'dyn_type': 'UNIT'}
qft = _System(system=_qft_system,
              controls=_qft_controls,
              initial=qutip.identity([2, 2]),
              target=qft.qft(2),
              kwargs=_qft_kwargs)

# Coupling constants are completely arbitrary.
_ising_system = (0.9*qutip.tensor(_sx, _si) + 0.7*qutip.tensor(_si, _sx)
                 + 0.8*qutip.tensor(_sz, _si) + 0.9*qutip.tensor(_si, _sz))
_ising_kwargs = {'num_tslots': 10, 'evo_time': 18, 'init_pulse_type': 'LIN',
                 'fid_err_targ': 1e-10, 'dyn_type': 'UNIT'}
ising = _System(system=_ising_system,
                controls=[qutip.tensor(_sz, _sz)],
                initial=qutip.basis([2, 2], [0, 0]),
                target=qutip.basis([2, 2], [1, 1]),
                kwargs=_ising_kwargs)

# Louivillian amplitude-damping channel system.
_l_adc_system = 0.1 * (2*qutip.tensor(_sm, _sp.dag())
Esempio n. 13
0
    def test_unitary(self):
        """
        Optimise pulse for Hadamard and QFT gate with linear initial pulses
        assert that goal is achieved and fidelity error is below threshold
        """
        # Hadamard
        H_d = sigmaz()
        H_c = [sigmax()]
        U_0 = identity(2)
        U_targ = hadamard_transform(1)

        n_ts = 10
        evo_time = 6
        
        # Run the optimisation
        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-10, 
                        init_pulse_type='LIN', 
                        gen_stats=True)
        assert_(result.goal_achieved, msg="Hadamard goal not achieved")
        assert_almost_equal(result.fid_err, 0.0, decimal=10, 
                            err_msg="Hadamard infidelity too high")
                            
        #Try without stats
        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-10, 
                        init_pulse_type='LIN', 
                        gen_stats=False)
        assert_(result.goal_achieved, msg="Hadamard goal not achieved "
                                            "(no stats)")
                                            
        #Try with Qobj propagation
        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-10, 
                        init_pulse_type='LIN', 
                        dyn_params={'oper_dtype':Qobj},
                        gen_stats=True)
        assert_(result.goal_achieved, msg="Hadamard goal not achieved "
                                            "(Qobj propagation)")
        
        # Check same result is achieved using the create objects method
        optim = cpo.create_pulse_optimizer(H_d, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-10, 
                        dyn_type='UNIT', 
                        init_pulse_type='LIN', 
                        gen_stats=True)
        dyn = optim.dynamics

        init_amps = optim.pulse_generator.gen_pulse().reshape([-1, 1])
        dyn.initialize_controls(init_amps)

        # Check the exact gradient
        func = optim.fid_err_func_wrapper
        grad = optim.fid_err_grad_wrapper
        x0 = dyn.ctrl_amps.flatten()
        grad_diff = check_grad(func, grad, x0)
        assert_almost_equal(grad_diff, 0.0, decimal=7,
                            err_msg="Unitary gradient outside tolerance")

        result2 = optim.run_optimization()
        assert_almost_equal(result.fid_err, result2.fid_err, decimal=10, 
                            err_msg="Direct and indirect methods produce "
                                    "different results for Hadamard")
                                    
        # QFT
        Sx = sigmax()
        Sy = sigmay()
        Sz = sigmaz()
        Si = 0.5*identity(2)
        
        H_d = 0.5*(tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
        H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
        #n_ctrls = len(H_c)
        U_0 = identity(4)
        # Target for the gate evolution - Quantum Fourier Transform gate
        U_targ = qft.qft(2)
        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-9, 
                        init_pulse_type='LIN', 
                        gen_stats=True)
                        
        assert_(result.goal_achieved, msg="QFT goal not achieved")
        assert_almost_equal(result.fid_err, 0.0, decimal=7, 
                            err_msg="QFT infidelity too high")
                            
        # check bounds
        result2 = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-9, 
                        amp_lbound=-1.0, amp_ubound=1.0,
                        init_pulse_type='LIN', 
                        gen_stats=True)
        assert_((result2.final_amps >= -1.0).all() and 
                    (result2.final_amps <= 1.0).all(), 
                    msg="Amplitude bounds exceeded for QFT")
Esempio n. 14
0
example_name = 'QFT'

## Defining the physics
Sx = sigmax()
Sy = sigmay()
Sz = sigmaz()
Si = 0.5*identity(2)
# Drift Hamiltonian
H_d = 0.5*(tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
# The (four) control Hamiltonians
H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
n_ctrls = len(H_c)
# start point for the gate evolution
U_0 = identity(4)
# Target for the gate evolution - Quantum Fourier Transform gate
U_targ = qft.qft(2)

## Defining the time evolution parameters
# Number of time slots
n_ts = 200
# Time allowed for the evolution
evo_time = 10

##Set the conditions which will cause the pulse optimisation to terminate
# Fidelity error target
fid_err_targ = 1e-3
# Maximum iterations for the optisation algorithm
max_iter = 20000
# Maximum (elapsed) time allowed in seconds
max_wall_time = 300
Esempio n. 15
0
 def qft_operator(self, N):
     n = int(math.log(N, 2))
     F = qft(n)
     F = F.full()
     np.around(F, c_round_dist, F)
     return qutip.Qobj(F)
Esempio n. 16
0
 def test_myIQFT_operator_correct(self):
     nqubits = 4
     benchIQFT = qft(nqubits)
     myIQFT = operator_IQFT(nqubits, False)
     np.testing.assert_array_almost_equal(benchIQFT, myIQFT)
# ****************************************************************
# Define the physics of the problem
Sx = sigmax()
Sy = sigmay()
Sz = sigmaz()
Si = 0.5 * identity(2)

# Drift Hamiltonian
H_d = 0.5 * (tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
# The (four) control Hamiltonians
H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
n_ctrls = len(H_c)
# start point for the gate evolution
U_0 = identity(4)
# Target for the gate evolution - Quantum Fourier Transform gate
U_targ = qft.qft(2)
# ***** Define time evolution parameters *****

# Duration of each timeslot
dt = 0.05
# List of evolution times to try
evo_times = [1, 3, 10]
n_evo_times = len(evo_times)
evo_time = evo_times[0]
n_ts = int(float(evo_time) / dt)
# Empty list that will hold the results for each evolution time
results = list()

# ***** Define the termination conditions *****
# Fidelity error target
fid_err_targ = 1e-10
Esempio n. 18
0
    def test_1_unitary(self):
        """
        control.pulseoptim: Hadamard and QFT gate with linear initial pulses
        assert that goal is achieved and fidelity error is below threshold
        """
        # Hadamard
        H_d = sigmaz()
        H_c = [sigmax()]
        U_0 = identity(2)
        U_targ = hadamard_transform(1)

        n_ts = 10
        evo_time = 10

        # Run the optimisation
        result = cpo.optimize_pulse_unitary(H_d,
                                            H_c,
                                            U_0,
                                            U_targ,
                                            n_ts,
                                            evo_time,
                                            fid_err_targ=1e-10,
                                            init_pulse_type='LIN',
                                            gen_stats=True)
        assert_(result.goal_achieved,
                msg="Hadamard goal not achieved. "
                "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
        assert_almost_equal(result.fid_err,
                            0.0,
                            decimal=10,
                            err_msg="Hadamard infidelity too high")

        #Try without stats
        result = cpo.optimize_pulse_unitary(H_d,
                                            H_c,
                                            U_0,
                                            U_targ,
                                            n_ts,
                                            evo_time,
                                            fid_err_targ=1e-10,
                                            init_pulse_type='LIN',
                                            gen_stats=False)
        assert_(result.goal_achieved,
                msg="Hadamard goal not achieved "
                "(no stats). "
                "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))

        #Try with Qobj propagation
        result = cpo.optimize_pulse_unitary(H_d,
                                            H_c,
                                            U_0,
                                            U_targ,
                                            n_ts,
                                            evo_time,
                                            fid_err_targ=1e-10,
                                            init_pulse_type='LIN',
                                            dyn_params={'oper_dtype': Qobj},
                                            gen_stats=True)
        assert_(result.goal_achieved,
                msg="Hadamard goal not achieved "
                "(Qobj propagation). "
                "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))

        # Check same result is achieved using the create objects method
        optim = cpo.create_pulse_optimizer(H_d,
                                           H_c,
                                           U_0,
                                           U_targ,
                                           n_ts,
                                           evo_time,
                                           fid_err_targ=1e-10,
                                           dyn_type='UNIT',
                                           init_pulse_type='LIN',
                                           gen_stats=True)
        dyn = optim.dynamics

        init_amps = optim.pulse_generator.gen_pulse().reshape([-1, 1])
        dyn.initialize_controls(init_amps)

        # Check the exact gradient
        func = optim.fid_err_func_wrapper
        grad = optim.fid_err_grad_wrapper
        x0 = dyn.ctrl_amps.flatten()
        grad_diff = check_grad(func, grad, x0)
        assert_almost_equal(grad_diff,
                            0.0,
                            decimal=7,
                            err_msg="Unitary gradient outside tolerance")

        result2 = optim.run_optimization()
        assert_almost_equal(result.fid_err,
                            result2.fid_err,
                            decimal=10,
                            err_msg="Direct and indirect methods produce "
                            "different results for Hadamard")

        # QFT
        Sx = sigmax()
        Sy = sigmay()
        Sz = sigmaz()
        Si = 0.5 * identity(2)

        H_d = 0.5 * (tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
        H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
        #n_ctrls = len(H_c)
        U_0 = identity(4)
        # Target for the gate evolution - Quantum Fourier Transform gate
        U_targ = qft.qft(2)
        result = cpo.optimize_pulse_unitary(H_d,
                                            H_c,
                                            U_0,
                                            U_targ,
                                            n_ts,
                                            evo_time,
                                            fid_err_targ=1e-9,
                                            init_pulse_type='LIN',
                                            gen_stats=True)

        assert_(result.goal_achieved,
                msg="QFT goal not achieved. "
                "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
        assert_almost_equal(result.fid_err,
                            0.0,
                            decimal=7,
                            err_msg="QFT infidelity too high")

        # check bounds
        result2 = cpo.optimize_pulse_unitary(H_d,
                                             H_c,
                                             U_0,
                                             U_targ,
                                             n_ts,
                                             evo_time,
                                             fid_err_targ=1e-9,
                                             amp_lbound=-1.0,
                                             amp_ubound=1.0,
                                             init_pulse_type='LIN',
                                             gen_stats=True)
        assert_((result2.final_amps >= -1.0).all()
                and (result2.final_amps <= 1.0).all(),
                msg="Amplitude bounds exceeded for QFT")
# Drift Hamiltonian
H_d = 0.5*(tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
print("drift {}".format(H_d))
# The (four) control Hamiltonians
H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
j = 0
for c in H_c:
    j += 1
    print("ctrl {} \n{}".format(j, c))

n_ctrls = len(H_c)
# start point for the gate evolution
U_0 = tensor(identity(2), identity(2))
print("U_0 {}".format(U_0))
# Target for the gate evolution - Quantum Fourier Transform gate
U_targ = (qft.qft(2)).tidyup()
#U_targ.dims = U_0.dims
print("target {}".format(U_targ))

print("Check unitary (should be I) {}".format(U_targ.dag()*U_targ))

# ***** Define time evolution parameters *****
# Number of time slots
n_ts = 10
# Time allowed for the evolution
evo_time = 10

# ***** Define the termination conditions *****
# Fidelity error target
fid_err_targ = 1e-14
# Maximum iterations for the optisation algorithm
Esempio n. 20
0
def QFT_pulse(N: int = 4, tau: float = 1):
    pulses = [T_I_pulse(N, tau)]
    for n in range(N-1):
        pulses.append(H_k_pulse(n, N, tau))
        pulses.append(P_n_pulse(n+1, N, tau))

    pulses.append(H_k_pulse(N-1, N, tau))
    pulses.append(T_F_pulse(N, tau))

    return ff.concatenate(pulses, calc_pulse_correlation_FF=False)


# %% Get a 4-qubit QFT and plot the filter function
omega = np.logspace(-2, 2, 500)

N = 4
QFT = QFT_pulse(N)

# Check the pulse produces the correct propagator after swapping the qubits
swaps = [qip.operations.swap(N, [i, j]).full()
         for i, j in zip(range(N//2), range(N-1, N//2-1, -1))]
prop = ff.util.mdot(swaps) @ QFT.total_propagator
qt.matrix_histogram_complex(prop)
print('Correct action: ',
      ff.util.oper_equiv(prop, qt_qft.qft(N), eps=1e-14))

fig, ax, _ = plotting.plot_filter_function(QFT, omega)
# Move the legend to the side because of many entries
ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)