Esempio n. 1
0
def countstat_current_noise(L, c_ops, wlist=None, rhoss=None, J_ops=None, 
                            sparse=True, method='direct'):
    """
    Compute the cross-current noise spectrum for a list of collapse operators
    `c_ops` corresponding to monitored currents, given the system
    Liouvillian `L`. The current collapse operators `c_ops` should be part
    of the dissipative processes in `L`, but the `c_ops` given here does not
    necessarily need to be all collapse operators contributing to dissipation
    in the Liouvillian. Optionally, the steadystate density matrix `rhoss`
    and the current operators `J_ops` correpsonding to the current collapse 
    operators `c_ops` can also be specified. If either of
    `rhoss` and `J_ops` are omitted, they will be computed internally.
    'wlist' is an optional list of frequencies at which to evaluate the noise 
    spectrum.  
    
    Note:
    The default method is a direct solution using dense matrices, as sparse 
    matrix methods fail for some examples of small systems.
    For larger systems it is reccomended to use the sparse solver
    with the direct method, as it avoids explicit calculation of the
    pseudo-inverse, as described in page 67 of "Electrons in nanostructures"
    C. Flindt, PhD Thesis, available online:
    http://orbit.dtu.dk/fedora/objects/orbit:82314/datastreams/file_4732600/content
    
    Parameters
    ----------

    L : :class:`qutip.Qobj`
        Qobj representing the system Liouvillian.

    c_ops : array / list
        List of current collapse operators.

    rhoss : :class:`qutip.Qobj` (optional)
        The steadystate density matrix corresponding the system Liouvillian
        `L`.
        
    wlist : array / list (optional)
        List of frequencies at which to evaluate (if none are given, evaluates 
        at zero frequency)

    J_ops : array / list (optional)
        List of current superoperators.

    sparse : bool
        Flag that indicates whether to use sparse or dense matrix methods when
        computing the pseudo inverse. Default is false, as sparse solvers
        can fail for small systems. For larger systems the sparse solvers
        are reccomended. 
        
        
    Returns
    --------
    I, S : tuple of arrays
        The currents `I` corresponding to each current collapse operator
        `c_ops` (or, equivalently, each current superopeator `J_ops`) and the
        zero-frequency cross-current correlation `S`.
    """

    if rhoss is None:
        rhoss = steadystate(L, c_ops)

    if J_ops is None:
        J_ops = [sprepost(c, c.dag()) for c in c_ops]

    

    N = len(J_ops)
    I = np.zeros(N)
    
    if wlist is None:
        S = np.zeros((N, N,1))
        wlist=[0.]
    else:
        S = np.zeros((N, N,len(wlist)))
        
    if sparse == False: 
        rhoss_vec = mat2vec(rhoss.full()).ravel()
        for k,w in enumerate(wlist):
            R = pseudo_inverse(L, rhoss=rhoss, w= w, sparse = sparse, method=method)
            for i, Ji in enumerate(J_ops):
                for j, Jj in enumerate(J_ops):
                    if i == j:
                        I[i] = expect_rho_vec(Ji.data, rhoss_vec, 1)
                        S[i, j,k] = I[i]
                    S[i, j,k] -= expect_rho_vec((Ji * R * Jj 
                                                + Jj * R * Ji).data,
                                                rhoss_vec, 1)
    else:
        if method == "direct":
            N = np.prod(L.dims[0][0])
            
            rhoss_vec = operator_to_vector(rhoss)
            
            tr_op = tensor([identity(n) for n in L.dims[0][0]])
            tr_op_vec = operator_to_vector(tr_op)
            
            Pop = sp.kron(rhoss_vec.data, tr_op_vec.data.T, format='csr')
            Iop = sp.eye(N*N, N*N, format='csr')
            Q = Iop - Pop
            
            for k,w in enumerate(wlist):
                
                if w != 0.0:    
                    L_temp = 1.0j*w*spre(tr_op) + L
                else: #At zero frequency some solvers fail for small systems.
                      #Adding a small finite frequency of order 1e-15
                      #helps prevent the solvers from throwing an exception.
                    L_temp =  1.0j*(1e-15)*spre(tr_op) + L
                    
                if not settings.has_mkl:
                    A = L_temp.data.tocsc()
                else:
                    A = L_temp.data.tocsr()
                    A.sort_indices()                      
                      
                rhoss_vec = mat2vec(rhoss.full()).ravel()               
                
                for j, Jj in enumerate(J_ops):
                    Qj = Q.dot( Jj.data.dot( rhoss_vec))
                    try:
                        if settings.has_mkl:
                            X_rho_vec_j = mkl_spsolve(A,Qj)                            
                        else:
                            X_rho_vec_j = sp.linalg.splu(A, permc_spec
                                                 ='COLAMD').solve(Qj)
                    except:
                        X_rho_vec_j = sp.linalg.lsqr(A,Qj)[0]
                    for i, Ji in enumerate(J_ops):
                        Qi = Q.dot( Ji.data.dot(rhoss_vec))
                        try:
                            if settings.has_mkl:                              
                                X_rho_vec_i = mkl_spsolve(A,Qi)  
                            else:
                                X_rho_vec_i = sp.linalg.splu(A, permc_spec
                                                     ='COLAMD').solve(Qi)
                        except:
                             X_rho_vec_i = sp.linalg.lsqr(A,Qi)[0]
                        if i == j:
                            I[i] = expect_rho_vec(Ji.data, 
                                                 rhoss_vec, 1)
                            S[j, i, k] = I[i]
                        
                        S[j, i, k] -= (expect_rho_vec(Jj.data * Q, 
                                        X_rho_vec_i, 1) 
                                        + expect_rho_vec(Ji.data * Q, 
                                        X_rho_vec_j, 1))

        else:
            rhoss_vec = mat2vec(rhoss.full()).ravel()
            for k,w in enumerate(wlist):

                R = pseudo_inverse(L,rhoss=rhoss, w= w, sparse = sparse, 
                                   method=method)
                                   
                for i, Ji in enumerate(J_ops):
                    for j, Jj in enumerate(J_ops):
                        if i == j:
                            I[i] = expect_rho_vec(Ji.data, rhoss_vec, 1)
                            S[i, j, k] = I[i]
                        S[i, j, k] -= expect_rho_vec((Ji * R * Jj 
                                                     + Jj * R * Ji).data,
                                                     rhoss_vec, 1)
    return I, S
Esempio n. 2
0
def countstat_current_noise(L,
                            c_ops,
                            wlist=None,
                            rhoss=None,
                            J_ops=None,
                            sparse=True,
                            method='direct'):
    """
    Compute the cross-current noise spectrum for a list of collapse operators
    `c_ops` corresponding to monitored currents, given the system
    Liouvillian `L`. The current collapse operators `c_ops` should be part
    of the dissipative processes in `L`, but the `c_ops` given here does not
    necessarily need to be all collapse operators contributing to dissipation
    in the Liouvillian. Optionally, the steadystate density matrix `rhoss`
    and the current operators `J_ops` correpsonding to the current collapse 
    operators `c_ops` can also be specified. If either of
    `rhoss` and `J_ops` are omitted, they will be computed internally.
    'wlist' is an optional list of frequencies at which to evaluate the noise 
    spectrum.  
    
    Note:
    The default method is a direct solution using dense matrices, as sparse 
    matrix methods fail for some examples of small systems.
    For larger systems it is reccomended to use the sparse solver
    with the direct method, as it avoids explicit calculation of the
    pseudo-inverse, as described in page 67 of "Electrons in nanostructures"
    C. Flindt, PhD Thesis, available online:
    http://orbit.dtu.dk/fedora/objects/orbit:82314/datastreams/file_4732600/content
    
    Parameters
    ----------

    L : :class:`qutip.Qobj`
        Qobj representing the system Liouvillian.

    c_ops : array / list
        List of current collapse operators.

    rhoss : :class:`qutip.Qobj` (optional)
        The steadystate density matrix corresponding the system Liouvillian
        `L`.
        
    wlist : array / list (optional)
        List of frequencies at which to evaluate (if none are given, evaluates 
        at zero frequency)

    J_ops : array / list (optional)
        List of current superoperators.

    sparse : bool
        Flag that indicates whether to use sparse or dense matrix methods when
        computing the pseudo inverse. Default is false, as sparse solvers
        can fail for small systems. For larger systems the sparse solvers
        are reccomended. 
        
        
    Returns
    --------
    I, S : tuple of arrays
        The currents `I` corresponding to each current collapse operator
        `c_ops` (or, equivalently, each current superopeator `J_ops`) and the
        zero-frequency cross-current correlation `S`.
    """

    if rhoss is None:
        rhoss = steadystate(L, c_ops)

    if J_ops is None:
        J_ops = [sprepost(c, c.dag()) for c in c_ops]

    N = len(J_ops)
    I = np.zeros(N)

    if wlist is None:
        S = np.zeros((N, N, 1))
        wlist = [0.]
    else:
        S = np.zeros((N, N, len(wlist)))

    if sparse == False:
        rhoss_vec = mat2vec(rhoss.full()).ravel()
        for k, w in enumerate(wlist):
            R = pseudo_inverse(L,
                               rhoss=rhoss,
                               w=w,
                               sparse=sparse,
                               method=method)
            for i, Ji in enumerate(J_ops):
                for j, Jj in enumerate(J_ops):
                    if i == j:
                        I[i] = expect_rho_vec(Ji.data, rhoss_vec, 1)
                        S[i, j, k] = I[i]
                    S[i, j, k] -= expect_rho_vec(
                        (Ji * R * Jj + Jj * R * Ji).data, rhoss_vec, 1)
    else:
        if method == "direct":
            N = np.prod(L.dims[0][0])

            rhoss_vec = operator_to_vector(rhoss)

            tr_op = tensor([identity(n) for n in L.dims[0][0]])
            tr_op_vec = operator_to_vector(tr_op)

            Pop = sp.kron(rhoss_vec.data, tr_op_vec.data.T, format='csr')
            Iop = sp.eye(N * N, N * N, format='csr')
            Q = Iop - Pop

            for k, w in enumerate(wlist):

                if w != 0.0:
                    L_temp = 1.0j * w * spre(tr_op) + L
                else:  #At zero frequency some solvers fail for small systems.
                    #Adding a small finite frequency of order 1e-15
                    #helps prevent the solvers from throwing an exception.
                    L_temp = 1.0j * (1e-15) * spre(tr_op) + L

                if not settings.has_mkl:
                    A = L_temp.data.tocsc()
                else:
                    A = L_temp.data.tocsr()
                    A.sort_indices()

                rhoss_vec = mat2vec(rhoss.full()).ravel()

                for j, Jj in enumerate(J_ops):
                    Qj = Q.dot(Jj.data.dot(rhoss_vec))
                    try:
                        if settings.has_mkl:
                            X_rho_vec_j = mkl_spsolve(A, Qj)
                        else:
                            X_rho_vec_j = sp.linalg.splu(
                                A, permc_spec='COLAMD').solve(Qj)
                    except:
                        X_rho_vec_j = sp.linalg.lsqr(A, Qj)[0]
                    for i, Ji in enumerate(J_ops):
                        Qi = Q.dot(Ji.data.dot(rhoss_vec))
                        try:
                            if settings.has_mkl:
                                X_rho_vec_i = mkl_spsolve(A, Qi)
                            else:
                                X_rho_vec_i = sp.linalg.splu(
                                    A, permc_spec='COLAMD').solve(Qi)
                        except:
                            X_rho_vec_i = sp.linalg.lsqr(A, Qi)[0]
                        if i == j:
                            I[i] = expect_rho_vec(Ji.data, rhoss_vec, 1)
                            S[j, i, k] = I[i]

                        S[j, i,
                          k] -= (expect_rho_vec(Jj.data * Q, X_rho_vec_i, 1) +
                                 expect_rho_vec(Ji.data * Q, X_rho_vec_j, 1))

        else:
            rhoss_vec = mat2vec(rhoss.full()).ravel()
            for k, w in enumerate(wlist):

                R = pseudo_inverse(L,
                                   rhoss=rhoss,
                                   w=w,
                                   sparse=sparse,
                                   method=method)

                for i, Ji in enumerate(J_ops):
                    for j, Jj in enumerate(J_ops):
                        if i == j:
                            I[i] = expect_rho_vec(Ji.data, rhoss_vec, 1)
                            S[i, j, k] = I[i]
                        S[i, j, k] -= expect_rho_vec(
                            (Ji * R * Jj + Jj * R * Ji).data, rhoss_vec, 1)
    return I, S
Esempio n. 3
0
def countstat_current_noise(L, c_ops, rhoss=None, J_ops=None, R=False):
    """
    Compute the cross-current noise spectrum for a list of collapse operators
    `c_ops` corresponding to monitored currents, given the system
    Liouvillian `L`. The current collapse operators `c_ops` should be part
    of the dissipative processes in `L`, but the `c_ops` given here does not
    necessarily need to be all collapse operators contributing to dissipation
    in the Liouvillian. Optionally, the steadystate density matrix `rhoss`
    and/or the pseudo inverse `R` of the Liouvillian `L`, and the current
    operators `J_ops` correpsonding to the current collapse operators `c_ops`
    can also be specified. If `R` is not given, the cross-current correlations
    will be computed directly without computing `R` explicitly. If either of
    `rhoss` and `J_ops` are omitted, they will be computed internally.

    Parameters
    ----------

    L : :class:`qutip.Qobj`
        Qobj representing the system Liouvillian.

    c_ops : array / list
        List of current collapse operators.

    rhoss : :class:`qutip.Qobj` (optional)
        The steadystate density matrix corresponding the system Liouvillian
        `L`.

    J_ops : array / list (optional)
        List of current superoperators.

    R : :class:`qutip.Qobj` (optional)
        Qobj representing the pseudo inverse of the system Liouvillian `L`.

    Returns
    --------
    I, S : tuple of arrays
        The currents `I` corresponding to each current collapse operator
        `c_ops` (or, equivalently, each current superopeator `J_ops`) and the
        zero-frequency cross-current correlation `S`.
    """

    if rhoss is None:
        rhoss = steadystate(L, c_ops)

    if J_ops is None:
        J_ops = [sprepost(c, c.dag()) for c in c_ops]

    rhoss_vec = mat2vec(rhoss.full()).ravel()

    N = len(J_ops)
    I = np.zeros(N)
    S = np.zeros((N, N))

    if R:
        if R is True:
            R = pseudo_inverse(L, rhoss)

        for i, Ji in enumerate(J_ops):
            for j, Jj in enumerate(J_ops):
                if i == j:
                    I[i] = expect_rho_vec(Ji.data, rhoss_vec, 1)
                    S[i, j] = I[i]

                S[i, j] -= expect_rho_vec((Ji * R * Jj + Jj * R * Ji).data,
                                          rhoss_vec, 1)
    else:
        N = np.prod(L.dims[0][0])

        rhoss_vec = operator_to_vector(rhoss)

        tr_op = tensor([identity(n) for n in L.dims[0][0]])
        tr_op_vec = operator_to_vector(tr_op)

        Pop = sp.kron(rhoss_vec.data, tr_op_vec.data.T, format='csc')
        Iop = sp.eye(N*N, N*N, format='csc')
        Q = Iop - Pop
        A = L.data.tocsc()
        rhoss_vec = mat2vec(rhoss.full()).ravel()

        for j, Jj in enumerate(J_ops):
            Qj = Q * Jj.data * rhoss_vec
            X_rho_vec = sp.linalg.splu(A, permc_spec='COLAMD').solve(Qj)
            for i, Ji in enumerate(J_ops):
                if i == j:
                    S[i, i] = I[i] = expect_rho_vec(Ji.data, rhoss_vec, 1)

                S[i, j] -= expect_rho_vec(Ji.data * Q, X_rho_vec, 1)

    return I, S