Esempio n. 1
0
class BlochPlot():
    '''
    Dynamic plot context, intended for displaying geometries.
    like removing axes, equal axis, dynamically tune your figure and save it.

    Args:
        figsize (tuple, default=(6,4)): figure size.
        filename (filename, str): filename to store generated figure, if None, it will not save a figure.

    Attributes:
        figsize (tuple, default=(6,4)): figure size.
        filename (filename, str): filename to store generated figure, if None, it will not save a figure.
        ax (Axes): matplotlib Axes instance.

    Examples:
        with BlochPlot() as bp:
            bp.ball.add_vectors([0.4, 0.6, 0.8])
    '''
    def __init__(self, figsize=(6, 4), filename=None, dpi=300):
        self.figsize = figsize
        self.filename = filename
        self.ax = None

    def __enter__(self):
        from qutip import Bloch3d, Bloch
        plt.ion()
        self.fig = plt.figure(figsize=self.figsize)
        self.ax = Axes3D(self.fig, azim=-30, elev=15)
        self.ball = Bloch(axes=self.ax)
        self.ball.zlabel = [r'$|N\rangle$', r'$|S\rangle$']
        return self

    def __exit__(self, *args):
        self.ax.axis('off')
        self.ax.set_aspect("equal")
        #self.ball.make_sphere()
        self.ball.make_sphere()
        plt.close()
        if self.filename is not None:
            print('Press `c` to save figure to "%s", `Ctrl+d` to break >>' %
                  self.filename)
            pdb.set_trace()
            plt.savefig(self.filename, dpi=300)
        else:
            pdb.set_trace()

    def add_polar(self, theta, phi, color=None):
        self.ball.add_vectors(polar2vec([1, theta, phi]))
        self.ball.vector_color.append(color)

    def text(self, vec, txt, fontsize=14):
        if len(vec) == 2:
            vec = polar2vec(*vec)
        self.ax.text(vec[0],
                     vec[1],
                     vec[2],
                     txt,
                     fontsize=fontsize,
                     va='center',
                     ha='center')
Esempio n. 2
0
def bloch_from_dataframe(df, fig, axes):
    """
    Plot Bloch sphere
    :param df: pd.DataFrame
    :param axes:
    :return:
    """
    bloch = Bloch(fig=fig, axes=axes)

    bloch.vector_color = plt.get_cmap('viridis')(np.linspace(0, 1, len(df)))

    bloch.add_states([
        Qobj([[row.Jxx, row.beta + 1j * row.gamma],
              [row.beta - 1j * row.gamma, row.Jyy]])
        for _, row in df.iterrows()
    ])

    bloch.make_sphere()
Esempio n. 3
0
    class CVisualizeAnim(object):
        """
        Class for drawing animation
        """
        def __init__(self, fig):

            #################################################################
            #
            # Initialize plotting exact plots tools
            #
            #################################################################

            # p = np.linspace(-20., 20., 1000)[:, np.newaxis]
            # q = np.linspace(-20., 20., 1000)[np.newaxis, :]
            #
            # self.hybrid = CAnalyticQCHybrid(p, q, kT=0.5)
            #
            # img_params = dict(
            #     extent=[q.min(), q.max(), p.min(), p.max()],
            #     origin='lower',
            #     cmap='seismic',
            #     # norm=WignerNormalize(vmin=-0.1, vmax=0.1)
            #     norm=WignerSymLogNorm(linthresh=1e-10, vmin=-0.01, vmax=0.1)
            # )

            p = np.linspace(-25, 25, 600)[:, np.newaxis]
            q = np.linspace(-25, 25, 600)[np.newaxis, :]

            self.hybrid = CAnalyticQCHybrid(p=p,
                                            q=q,
                                            omega=1.,
                                            beta=2.,
                                            alpha=0.95)

            img_params = dict(
                extent=[q.min(), q.max(), p.min(),
                        p.max()],
                origin='lower',
                cmap='seismic',
                # norm=WignerNormalize(vmin=-0.1, vmax=0.1)
                norm=WignerSymLogNorm(linthresh=1e-10, vmin=-0.01, vmax=0.1))

            #################################################################
            #
            # Initialize Pauli propagator
            #
            #################################################################

            self.pauli = SplitOpPauliLike1D(
                X_amplitude=2. * q.max(),
                X_gridDIM=512,
                dt=0.0001,
                K0="0.5 * P ** 2",
                V0="0.5 * X ** 2",
                V1="0.5 * 0.95 * X ** 2",

                # kT=self.hybrid.kT, # parameters controlling the width of the initial wavepacket
            ).set_wavefunction("exp(-0.5 * X ** 2)")

            #################################################################
            #
            # Initialize plotting facility
            #
            #################################################################

            self.fig = fig

            self.fig.suptitle(
                "Quantum-classical hybrid $m=1$, $\omega=1$, $\\alpha=0.95$, $\\beta={:.1e}$ (a.u.) (a.u.)"
                .format(self.hybrid.beta))

            self.ax = fig.add_subplot(221)
            self.ax.set_title('Classical density')

            # generate empty plots
            self.img_classical_density = self.ax.imshow([[0]], **img_params)

            self.ax.set_xlabel('$q$ (a.u.)')
            self.ax.set_ylabel('$p$ (a.u.)')

            ax = fig.add_subplot(222)

            ax.set_title('Quantum purity')
            self.quantum_purity_plot, = ax.plot([0., 40], [1, 0.5],
                                                label='hybrid')
            self.pauli_quantum_purity_plot, = ax.plot([0., 40], [1, 0.5],
                                                      label='Pauli')

            ax.set_xlabel('time (a.u.)')
            ax.set_ylabel("quantum purity")
            ax.legend()

            self.time = []
            self.qpurity = []
            self.pauli_qpurity = []

            ax = fig.add_subplot(223)

            ax.set_title("Coordinate distribution")
            self.c_coordinate_distribution, = ax.semilogy(
                [self.hybrid.q.min(), self.hybrid.q.max()], [1e-11, 1e0],
                label="hybrid")
            self.pauli_coordinate_distribution, = ax.semilogy(
                [self.hybrid.q.min(), self.hybrid.q.max()], [1e-11, 1e0],
                label="Pauli")

            ax.legend()

            ax.set_xlabel('$q$ (a.u.)')
            ax.set_ylabel('Probability density')

            ax = fig.add_subplot(224, projection='3d', azim=90, elev=0)

            self.bloch = Bloch(axes=ax)
            self.bloch.make_sphere()

        def __call__(self, frame_num):
            """
            Draw a new frame
            :param frame_num: current frame number
            :return: image objects
            """
            # convert the frame number to time
            #t = 0.05 * frame_num
            t = self.pauli.t

            # calculate the hybrid density matrix
            self.hybrid.calculate_D(t)

            # plot the classical density
            c_rho = self.hybrid.classical_density()

            self.img_classical_density.set_array(c_rho)
            self.ax.set_title(
                'Classical density \n $t = {:.1f}$ (a.u.)'.format(t))

            # plot the coordinate distribution for the classical density
            coordinate_marginal = c_rho.sum(axis=0)
            # coordinate_marginal *= self.hybrid.dp
            coordinate_marginal /= coordinate_marginal.max()

            self.c_coordinate_distribution.set_data(self.hybrid.q.reshape(-1),
                                                    coordinate_marginal)
            coordinate_density = self.pauli.coordinate_density
            coordinate_density /= coordinate_density.max()
            self.pauli_coordinate_distribution.set_data(
                self.pauli.X, coordinate_density)

            # plot quantum purity
            self.time.append(t)
            self.qpurity.append(self.hybrid.quantum_purity())

            self.quantum_purity_plot.set_data(self.time, self.qpurity)

            # Get the Pauli density matrix
            rho12 = np.sum(self.pauli.psi1 * self.pauli.psi2.conjugate())

            rho_pauli = np.array(
                [[np.sum(np.abs(self.pauli.psi1)**2), rho12],
                 [rho12.conjugate(),
                  np.sum(np.abs(self.pauli.psi2)**2)]])
            rho_pauli *= self.pauli.dX

            # plot Pauli purity
            self.pauli_qpurity.append(rho_pauli.dot(rho_pauli).trace().real)

            self.pauli_quantum_purity_plot.set_data(self.time,
                                                    self.pauli_qpurity)

            # plot Bloch vector
            self.bloch.clear()
            self.bloch.add_states(
                [Qobj(self.hybrid.quantum_density()),
                 Qobj(rho_pauli)])
            self.bloch.make_sphere()

            #
            self.pauli.propagate(1000)

            return self.img_classical_density, self.quantum_purity_plot, self.pauli_quantum_purity_plot,\
                   self.bloch, self.pauli_coordinate_distribution
Esempio n. 4
0
    class CVisualizeAnim(object):
        """
        Class for drawing animation
        """
        def __init__(self, fig):

            #################################################################
            #
            # Initialize plotting exact plots tools
            #
            #################################################################

            # p = np.linspace(-20., 20., 1000)[:, np.newaxis]
            # q = np.linspace(-20., 20., 1000)[np.newaxis, :]
            #
            # self.hybrid = CAnalyticQCHybrid(p, q, kT=0.5)
            #
            # img_params = dict(
            #     extent=[q.min(), q.max(), p.min(), p.max()],
            #     origin='lower',
            #     cmap='seismic',
            #     # norm=WignerNormalize(vmin=-0.1, vmax=0.1)
            #     norm=WignerSymLogNorm(linthresh=1e-10, vmin=-0.01, vmax=0.1)
            # )

            p = np.linspace(-0.1, 0.1, 500)[:, np.newaxis]
            q = np.linspace(-0.1, 0.1, 500)[np.newaxis, :]

            self.hybrid = SolAGKEq(p=p, q=q, omega=1., beta=1e5, alpha=0.95)

            img_params = dict(
                extent=[q.min(), q.max(), p.min(),
                        p.max()],
                origin='lower',
                cmap='seismic',
                #norm=WignerNormalize(vmin=-0.1, vmax=0.1)
                norm=WignerSymLogNorm(linthresh=1e-10, vmin=-0.01, vmax=0.1))

            # List to save the total hybrid energy for testing (it must be a conserved quantity)
            self.total_energy = []

            # List to save the x component of the Bloch vector
            self.sigma_1 = []

            #################################################################
            #
            # Initialize plotting facility
            #
            #################################################################

            self.fig = fig

            self.fig.suptitle(
                "Quantum-classical hybrid $m=1$, $\omega=1$, $\\alpha=0.95$, $\\beta={:.1e}$ (a.u.) (a.u.)"
                .format(self.hybrid.beta))

            self.ax = fig.add_subplot(221)
            self.ax.set_title('Classical density')

            # generate empty plots
            self.img_classical_density = self.ax.imshow([[0]], **img_params)

            self.ax.set_xlabel('$q$ (a.u.)')
            self.ax.set_ylabel('$p$ (a.u.)')

            ax = fig.add_subplot(222)

            ax.set_title('Quantum purity')
            self.quantum_purity_plot, = ax.plot([0., 1000000], [1, 0.5])
            ax.set_xlabel('time (a.u.)')
            ax.set_ylabel("quantum purity")

            self.time = []
            self.qpurity = []

            ax = fig.add_subplot(223)

            ax.set_title("Coordinate distribution")
            self.c_coordinate_distribution, = ax.semilogy(
                [self.hybrid.q.min(), self.hybrid.q.max()], [1e-11, 1e0],
                label="hybrid")
            ax.legend()

            ax.set_xlabel('$q$ (a.u.)')
            ax.set_ylabel('Probability density')

            ax = fig.add_subplot(224, projection='3d', azim=0, elev=0)

            self.bloch = Bloch(axes=ax)
            self.bloch.make_sphere()

        def __call__(self, frame_num):
            """
            Draw a new frame
            :param frame_num: current frame number
            :return: image objects
            """
            # convert the frame number to time
            t = 4000. * frame_num

            # calculate the hybrid density matrix
            self.hybrid.calculate_D(t)

            # Save total energy
            self.total_energy.append(self.hybrid.energy())

            # Save <sigma_1>
            self.sigma_1.append(self.hybrid.average_sigma_1())

            # plot the classical density
            c_rho = self.hybrid.classical_density()

            self.img_classical_density.set_array(c_rho)
            self.ax.set_title(
                'Classical density \n $t = {:.1f}$ (a.u.)'.format(t))

            # plot the coordinate distribution for the classical density
            coordinate_marginal = c_rho.sum(axis=0)
            # coordinate_marginal *= self.hybrid.dp
            coordinate_marginal /= coordinate_marginal.max()

            self.c_coordinate_distribution.set_data(self.hybrid.q.reshape(-1),
                                                    coordinate_marginal)

            # plot quantum purity
            self.time.append(t)
            self.qpurity.append(self.hybrid.quantum_purity())

            self.quantum_purity_plot.set_data(self.time, self.qpurity)

            # plot Bloch vector
            self.bloch.clear()
            self.bloch.add_states(Qobj(self.hybrid.quantum_density()))
            self.bloch.make_sphere()

            #
            # self.pauli.propagate(100)

            return self.img_classical_density, self.quantum_purity_plot, self.bloch,
@author: wittek
"""
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from qutip import Bloch
from graphics_utils import initialize_graphics

colors = initialize_graphics()

fig = plt.figure()
axes = Axes3D(fig)
axes.grid = True
axes.axis("off")
axes.set_axis_off()

b=Bloch()

b.fig = fig
b.axes = axes
#b.fig = fig
#b.frame_width=1
b.sphere_color = 'white'
b.sphere_alpha = 0.1
#b.size = [10, 10]
b.make_sphere()

plt.savefig('./bloch_sphere.svg',bbox_inches='tight')
#b.show()
#b.save('bloch_sphere.pdf',format='pdf')