def test_link_solver(): _new() cube1, _ = cmds.polyCube(height=1) cmds.move(0, 5, 0) cube2, _ = cmds.polyCube(height=1) cmds.move(0, 10, 0) solver1 = api.createSolver() solver2 = api.createSolver() api.createGround(solver1) api.createGround(solver2) api.assignMarker(cube1, solver1) api.assignMarker(cube2, solver2) api.linkSolver(solver1, solver2) api.recordPhysics(solver2, opts={"startTime": 1, "endTime": 20}) # box2 is now stacked on top of box1 cube2 = cmdx.encode(cube2) # The center of the cube on top of the other cube # both of which are 1 unit high. # ____ # / /| # /___/ | <--- 1.5 units # | | / # |___|/| # | | / # |___|/ # assert_almost_equals(cmds.getAttr("pCube2.ty", time=20), 1.5, 1)
def test_retarget(): _new() solver = api.createSolver() joint1 = cmds.joint() cmds.move(0, 5, 0) joint2 = cmds.joint() cmds.move(5, 5, 0) cmds.joint() # tip cmds.move(10, 5, 0) markers = api.assignMarkers([joint1, joint2], solver) # Retarget to this box box, _ = cmds.polyCube() api.retargetMarker(markers[1], box) # The box should now get recorded, not the joint cmdx.min_time(1) cmdx.max_time(50) api.recordPhysics(solver) joint2 = cmdx.encode(joint2) box = cmdx.encode(box) assert not joint2["tx"].input(), "%s was connected" % joint2["tx"].path() assert box["tx"].input(), "%s was not connected" % box["tx"].path()
def test_animated_controls(): # Existing animation should be kept and ignored, # new animation ending up on a layer _new() joint1 = cmds.joint() cmds.move(0, 5, 0) joint2 = cmds.joint() cmds.move(5, 5, 0) joint3 = cmds.joint() # tip cmds.move(10, 5, 0) joint = cmdx.encode(joint2) joint["rz"] = {1: 0.0, 10: 1.0, 20: 0.0} # Some animation solver = api.createSolver() api.assignMarkers([joint1, joint2, joint3], solver) cmdx.min_time(1) cmdx.max_time(15) api.recordPhysics(solver) # It must have changed by now value = joint["rz"].read(time=cmdx.time(10)) assert_not_equals("%.1f" % value, "1.0") # Deleting the animation layer restores the original animation cmds.delete(cmds.ls(type="container")) value = joint["rz"].read(time=cmdx.time(10)) assert_equals("%.1f" % value, "1.0")
def test_record_constrained_controls(): # Existing constraints should be preserved _new() joint1 = cmds.joint() cmds.move(0, 5, 0) joint2 = cmds.joint() cmds.move(5, 5, 0) joint3 = cmds.joint() # tip cmds.move(10, 5, 0) ctrl = cmds.createNode("transform", name="control") con = cmds.parentConstraint(ctrl, joint1)[0] # o---o---o # 1 2 3 solver = api.createSolver() api.assignMarkers([joint1, joint2, joint3], solver) cmdx.min_time(1) cmdx.max_time(5) # Won't need many frames api.recordPhysics(solver) # The joint was kinematic, and is still connected joint1 = cmdx.encode(joint1) con = cmdx.encode(con) assert_equals(joint1["tx"].input(type="parentConstraint"), con)
def test_record_ik(): # Recording IK involves retargeting and untargeting _new() joint1 = cmds.joint() cmds.move(0, 5, 0) joint2 = cmds.joint() cmds.move(5, 5, 0) joint3 = cmds.joint() # tip cmds.move(10, 5, 0) handle, eff = cmds.ikHandle(joint1, joint2) pole = cmds.spaceLocator()[0] cmds.poleVectorConstraint(pole, handle)[0] # o---o---o # 1 2 3 solver = api.createSolver() markers = api.assignMarkers([joint1, joint2, joint3], solver) api.untarget_marker(markers[0]) api.retarget_marker(markers[1], pole) api.retarget_marker(markers[2], handle) cmdx.min_time(1) cmdx.max_time(5) # Won't need many frames api.recordPhysics(solver) joint1 = cmdx.encode(joint1) joint2 = cmdx.encode(joint2) handle = cmdx.encode(handle) assert not joint1["tx"].connected, "%s was connected" % joint1["tx"].path() assert not joint2["tx"].connected, "%s was connected" % joint2["tx"].path() assert handle["tx"].connected, "%s was not connected" % handle["tx"].path()
def test_record_100(): # Non-commercial users can only record up to 100 frames _new() solver = api.createSolver() cube1, _ = cmds.polyCube() api.assignMarker(cube1, solver) # The cube will fall and fall, long past 100 frames cmdx.min_time(0) cmdx.max_time(120) api.recordPhysics(solver) value_at_100 = cmds.getAttr(cube1 + ".ty", time=100) value_at_110 = cmds.getAttr(cube1 + ".ty", time=110) # It'll have fallen far beyond minus 10 assert_less(value_at_100, -10) if is_commercial: # Since we're able to record past 100 frames, the box will # have kept falling further than frame 100 commercial = 0 assert_less(value_at_110, value_at_100 + commercial) else: # Since recording stops at 100, any frame after that will be the same non_commercial = 0 assert_equals(value_at_110, value_at_100 + non_commercial)
def test_record_nokinematic(): _new() solver = api.createSolver() cube1, _ = cmds.polyCube() marker = api.assignMarker(cube1, solver) cmds.setAttr(marker + ".inputType", api.InputKinematic) api.recordPhysics(solver, opts={"includeKinematic": False}) cube1 = cmdx.encode(cube1) assert not cube1["tx"].connected, ( "%s was kinematic, it should not have been recorded" % cube1["tx"].path())
def test_unlink_solver(): test_link_solver() solver1 = "rSolverShape" solver2 = "rSolverShape1" api.unlinkSolver(solver1) # Delete old record cmds.delete(cmds.ls(type="container")) # The box should now intersect the other, landing at ty=0.5 api.recordPhysics(solver2, opts={"startTime": 1, "endTime": 20}) # box2 is no longer stacked on top of box1 assert_almost_equals(cmds.getAttr("pCube2.ty", time=20), 0.5, 1)
def test_assign_group(): _new() solver = api.createSolver() joint1 = cmds.joint() cmds.move(0, 5, 0) joint2 = cmds.joint() cmds.move(5, 5, 0) cmds.joint() # tip cmds.move(10, 5, 0) markers = api.assignMarkers([joint1, joint2], solver) # Check the results marker = cmdx.encode(markers[0]) group = marker["startState"].output(type="rdGroup") group["driveStiffness"] = 0.001 cmdx.min_time(1) cmdx.max_time(50) api.recordPhysics(solver) joint2 = cmdx.encode(joint2) assert_almost_equals(joint2["rz", cmdx.Degrees].read(time=cmdx.time(50)), -32, 0)