Esempio n. 1
0
def test_refund_transfer(raiden_chain, number_of_nodes, token_addresses,
                         deposit, network_wait, retry_timeout):
    """A failed transfer must send a refund back.

    TODO:
        - Unlock the token on refund #1091
        - Clear the pending locks and update the locked amount #193
        - Remove the refund message type #490"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    token_network_registry_address = app0.raiden.default_registry.address
    token_network_address = views.get_token_network_address_by_token_address(
        views.state_from_app(app0), token_network_registry_address,
        token_address)

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = PaymentID(1)
    amount_path = PaymentAmount(1)
    transfer(
        initiator_app=app0,
        target_app=app2,
        token_address=token_address,
        amount=amount_path,
        identifier=identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app1 -> app2
    identifier_drain = PaymentID(2)
    amount_drain = PaymentAmount(deposit * 8 // 10)
    transfer(
        initiator_app=app1,
        target_app=app2,
        token_address=token_address,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    with gevent.Timeout(network_wait):
        wait_assert(
            assert_synced_channel_state,
            token_network_address,
            app0,
            deposit - amount_path,
            [],
            app1,
            deposit + amount_path,
            [],
        )
    with gevent.Timeout(network_wait):
        wait_assert(
            assert_synced_channel_state,
            token_network_address,
            app1,
            deposit - amount_path - amount_drain,
            [],
            app2,
            deposit + amount_path + amount_drain,
            [],
        )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = PaymentID(3)
    amount_refund = PaymentAmount(50)
    fee = calculate_fee_for_amount(amount_refund)
    fee_margin = calculate_fee_margin(amount_refund, fee)
    amount_refund_with_fees = amount_refund + fee + fee_margin
    payment_status = app0.raiden.mediated_transfer_async(
        token_network_address, amount_refund, app2.raiden.address,
        identifier_refund)
    msg = "there is no path with capacity, the transfer must fail"
    assert isinstance(payment_status.payment_done.wait(),
                      EventPaymentSentFailed), msg

    # A lock structure with the correct amount

    send_locked = raiden_events_search_for_item(
        app0.raiden,
        SendLockedTransfer,
        {"transfer": {
            "lock": {
                "amount": amount_refund_with_fees
            }
        }},
    )
    assert send_locked
    secrethash = send_locked.transfer.lock.secrethash

    send_refund = raiden_events_search_for_item(app1.raiden,
                                                SendRefundTransfer, {})
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.transfer.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration
    assert lock.secrethash == refund_lock.secrethash

    # Both channels have the amount locked because of the refund message
    with gevent.Timeout(network_wait):
        wait_assert(
            assert_synced_channel_state,
            token_network_address,
            app0,
            deposit - amount_path,
            [lock],
            app1,
            deposit + amount_path,
            [refund_lock],
        )
    with gevent.Timeout(network_wait):
        wait_assert(
            assert_synced_channel_state,
            token_network_address,
            app1,
            deposit - amount_path - amount_drain,
            [],
            app2,
            deposit + amount_path + amount_drain,
            [],
        )

    # Additional checks for LockExpired causing nonce mismatch after refund transfer:
    # https://github.com/raiden-network/raiden/issues/3146#issuecomment-447378046
    # At this point make sure that the initiator has not deleted the payment task
    assert secrethash in state_from_raiden(
        app0.raiden).payment_mapping.secrethashes_to_task

    # Wait for lock lock expiration but make sure app0 never processes LockExpired
    with dont_handle_lock_expired_mock(app0):
        wait_for_block(
            raiden=app0.raiden,
            block_number=BlockNumber(
                channel.get_sender_expiration_threshold(lock.expiration) + 1),
            retry_timeout=retry_timeout,
        )
        # make sure that app0 still has the payment task for the secrethash
        # https://github.com/raiden-network/raiden/issues/3183
        assert secrethash in state_from_raiden(
            app0.raiden).payment_mapping.secrethashes_to_task

        # make sure that app1 sent a lock expired message for the secrethash
        send_lock_expired = raiden_events_search_for_item(
            app1.raiden, SendLockExpired, {"secrethash": secrethash})
        assert send_lock_expired
        # make sure that app0 never got it
        state_changes = app0.raiden.wal.storage.get_statechanges_by_range(
            RANGE_ALL_STATE_CHANGES)
        assert not search_for_item(state_changes, ReceiveLockExpired,
                                   {"secrethash": secrethash})

    # Out of the handicapped app0 transport.
    # Now wait till app0 receives and processes LockExpired
    receive_lock_expired = wait_for_state_change(app0.raiden,
                                                 ReceiveLockExpired,
                                                 {"secrethash": secrethash},
                                                 retry_timeout)
    # And also till app1 received the processed
    wait_for_state_change(
        app1.raiden,
        ReceiveProcessed,
        {"message_identifier": receive_lock_expired.message_identifier},
        retry_timeout,
    )

    # make sure app1 queue has cleared the SendLockExpired
    chain_state1 = views.state_from_app(app1)
    queues1 = views.get_all_messagequeues(chain_state=chain_state1)
    result = [(queue_id, queue) for queue_id, queue in queues1.items()
              if queue_id.recipient == app0.raiden.address and queue]
    assert not result

    # and now wait for 1 more block so that the payment task can be deleted
    wait_for_block(
        raiden=app0.raiden,
        block_number=app0.raiden.get_block_number() + 1,
        retry_timeout=retry_timeout,
    )

    # and since the lock expired message has been sent and processed then the
    # payment task should have been deleted from both nodes
    # https://github.com/raiden-network/raiden/issues/3183
    assert secrethash not in state_from_raiden(
        app0.raiden).payment_mapping.secrethashes_to_task
    assert secrethash not in state_from_raiden(
        app1.raiden).payment_mapping.secrethashes_to_task
Esempio n. 2
0
def test_refund_transfer(
    raiden_chain,
    number_of_nodes,
    token_addresses,
    deposit,
    network_wait,
    retry_timeout,
    # UDP does not seem to retry messages until processed
    # https://github.com/raiden-network/raiden/issues/3185
    skip_if_not_matrix,
):
    """A failed transfer must send a refund back.

    TODO:
        - Unlock the token on refund #1091
        - Clear the merkletree and update the locked amount #193
        - Remove the refund message type #490"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_network_identifier,
        amount_path,
        identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    mediated_transfer(
        initiator_app=app1,
        target_app=app2,
        token_network_identifier=token_network_identifier,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synced_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [],
        app1,
        deposit + amount_path,
        [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait(
    ) is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount

    send_locked = raiden_events_search_for_item(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {
            'lock': {
                'amount': amount_refund
            }
        }},
    )
    assert send_locked
    secrethash = send_locked.transfer.lock.secrethash

    send_refund = raiden_events_search_for_item(app1.raiden,
                                                SendRefundTransfer, {})
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.transfer.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration
    assert lock.secrethash == refund_lock.secrethash

    # Both channels have the amount locked because of the refund message
    assert_synced_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [lockstate_from_lock(lock)],
        app1,
        deposit + amount_path,
        [lockstate_from_lock(refund_lock)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )

    # Additional checks for LockExpired causing nonce mismatch after refund transfer:
    # https://github.com/raiden-network/raiden/issues/3146#issuecomment-447378046
    # At this point make sure that the initiator has not deleted the payment task
    assert secrethash in state_from_raiden(
        app0.raiden).payment_mapping.secrethashes_to_task

    # Wait for lock lock expiration but make sure app0 never processes LockExpired
    with dont_handle_lock_expired_mock(app0):
        wait_for_block(
            raiden=app0.raiden,
            block_number=channel.get_sender_expiration_threshold(lock) + 1,
            retry_timeout=retry_timeout,
        )
        # make sure that app0 still has the payment task for the secrethash
        # https://github.com/raiden-network/raiden/issues/3183
        assert secrethash in state_from_raiden(
            app0.raiden).payment_mapping.secrethashes_to_task

        # make sure that app1 sent a lock expired message for the secrethash
        send_lock_expired = raiden_events_search_for_item(
            app1.raiden,
            SendLockExpired,
            {'secrethash': secrethash},
        )
        assert send_lock_expired
        # make sure that app0 never got it
        state_changes = app0.raiden.wal.storage.get_statechanges_by_identifier(
            0, 'latest')
        assert not search_for_item(
            state_changes,
            ReceiveLockExpired,
            {'secrethash': secrethash},
        )

    # Out of the handicapped app0 transport.
    # Now wait till app0 receives and processes LockExpired
    receive_lock_expired = wait_for_state_change(
        app0.raiden,
        ReceiveLockExpired,
        {'secrethash': secrethash},
        retry_timeout,
    )
    # And also till app1 received the processed
    wait_for_state_change(
        app1.raiden,
        ReceiveProcessed,
        {'message_identifier': receive_lock_expired.message_identifier},
        retry_timeout,
    )

    # make sure app1 queue has cleared the SendLockExpired
    chain_state1 = views.state_from_app(app1)
    queues1 = views.get_all_messagequeues(chain_state=chain_state1)
    result = [(queue_id, queue) for queue_id, queue in queues1.items()
              if queue_id.recipient == app0.raiden.address and queue]
    assert not result

    # and now wait for 1 more block so that the payment task can be deleted
    wait_for_block(
        raiden=app0.raiden,
        block_number=app0.raiden.get_block_number() + 1,
        retry_timeout=retry_timeout,
    )

    # and since the lock expired message has been sent and processed then the
    # payment task should have been deleted from both nodes
    # https://github.com/raiden-network/raiden/issues/3183
    assert secrethash not in state_from_raiden(
        app0.raiden).payment_mapping.secrethashes_to_task
    assert secrethash not in state_from_raiden(
        app1.raiden).payment_mapping.secrethashes_to_task
Esempio n. 3
0
def test_refund_transfer(
        raiden_chain,
        number_of_nodes,
        token_addresses,
        deposit,
        network_wait,
        retry_timeout,
        # UDP does not seem to retry messages until processed
        # https://github.com/raiden-network/raiden/issues/3185
        skip_if_not_matrix,
):
    """A failed transfer must send a refund back.

    TODO:
        - Unlock the token on refund #1091
        - Clear the merkletree and update the locked amount #193
        - Remove the refund message type #490"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_network_identifier,
        amount_path,
        identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    mediated_transfer(
        initiator_app=app1,
        target_app=app2,
        token_network_identifier=token_network_identifier,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synced_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [],
        app1, deposit + amount_path, [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1, deposit - amount_path - amount_drain, [],
        app2, deposit + amount_path + amount_drain, [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait() is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount

    send_locked = raiden_events_must_contain_entry(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {'lock': {'amount': amount_refund}}},
    )
    assert send_locked
    secrethash = send_locked.transfer.lock.secrethash

    send_refund = raiden_events_must_contain_entry(app1.raiden, SendRefundTransfer, {})
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.transfer.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration
    assert lock.secrethash == refund_lock.secrethash

    # Both channels have the amount locked because of the refund message
    assert_synced_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [lockstate_from_lock(lock)],
        app1, deposit + amount_path, [lockstate_from_lock(refund_lock)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1, deposit - amount_path - amount_drain, [],
        app2, deposit + amount_path + amount_drain, [],
    )

    # Additional checks for LockExpired causing nonce mismatch after refund transfer:
    # https://github.com/raiden-network/raiden/issues/3146#issuecomment-447378046
    # At this point make sure that the initiator has not deleted the payment task
    assert secrethash in state_from_raiden(app0.raiden).payment_mapping.secrethashes_to_task

    # Wait for lock lock expiration but make sure app0 never processes LockExpired
    with dont_handle_lock_expired_mock(app0):
        wait_for_block(
            raiden=app0.raiden,
            block_number=channel.get_sender_expiration_threshold(lock) + 1,
            retry_timeout=retry_timeout,
        )
        # make sure that app0 still has the payment task for the secrethash
        # https://github.com/raiden-network/raiden/issues/3183
        assert secrethash in state_from_raiden(app0.raiden).payment_mapping.secrethashes_to_task

        # make sure that app1 sent a lock expired message for the secrethash
        send_lock_expired = raiden_events_must_contain_entry(
            app1.raiden,
            SendLockExpired,
            {'secrethash': secrethash},
        )
        assert send_lock_expired
        # make sure that app0 never got it
        state_changes = app0.raiden.wal.storage.get_statechanges_by_identifier(0, 'latest')
        assert not must_contain_entry(
            state_changes,
            ReceiveLockExpired,
            {'secrethash': secrethash},
        )

    # Out of the handicapped app0 transport.
    # Now wait till app0 receives and processes LockExpired
    receive_lock_expired = wait_for_state_change(
        app0.raiden,
        ReceiveLockExpired,
        {'secrethash': secrethash},
        retry_timeout,
    )
    # And also till app1 received the processed
    wait_for_state_change(
        app1.raiden,
        ReceiveProcessed,
        {'message_identifier': receive_lock_expired.message_identifier},
        retry_timeout,
    )

    # make sure app1 queue has cleared the SendLockExpired
    chain_state1 = views.state_from_app(app1)
    queues1 = views.get_all_messagequeues(chain_state=chain_state1)
    result = [
        (queue_id, queue)
        for queue_id, queue in queues1.items()
        if queue_id.recipient == app0.raiden.address and
        queue
    ]
    assert not result

    # and now wait for 1 more block so that the payment task can be deleted
    wait_for_block(
        raiden=app0.raiden,
        block_number=app0.raiden.get_block_number() + 1,
        retry_timeout=retry_timeout,
    )

    # and since the lock expired message has been sent and processed then the
    # payment task should have been deleted from both nodes
    # https://github.com/raiden-network/raiden/issues/3183
    assert secrethash not in state_from_raiden(app0.raiden).payment_mapping.secrethashes_to_task
    assert secrethash not in state_from_raiden(app1.raiden).payment_mapping.secrethashes_to_task