Esempio n. 1
0
def experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    env = NormalizedBoxEnv(env, **variant['normalize_kwargs'])
    if variant['multitask']:
        env = MultitaskToFlatEnv(env)
    es = OUStrategy(action_space=env.action_space, **variant['ou_kwargs'])
    obs_dim = int(env.observation_space.flat_dim)
    action_dim = int(env.action_space.flat_dim)
    obs_normalizer = TorchFixedNormalizer(obs_dim)
    action_normalizer = TorchFixedNormalizer(action_dim)
    qf = MlpQf(input_size=obs_dim + action_dim,
               output_size=1,
               obs_normalizer=obs_normalizer,
               action_normalizer=action_normalizer,
               **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim,
                           output_size=action_dim,
                           obs_normalizer=obs_normalizer,
                           **variant['policy_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = DDPG(env,
                     qf,
                     policy,
                     exploration_policy,
                     obs_normalizer=obs_normalizer,
                     action_normalizer=action_normalizer,
                     **variant['algo_kwargs'])
    algorithm.train()
def experiment(variant):
    env = gym.make(variant['env_id'])
    env = NormalizedBoxEnv(env)
    es = GaussianStrategy(action_space=env.action_space, )
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size

    qf = FlattenMlp(input_size=obs_dim + action_dim,
                    output_size=1,
                    hidden_sizes=[128, 128])
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[128, 128],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = DDPG(env,
                     qf=qf,
                     policy=policy,
                     exploration_policy=exploration_policy,
                     **variant['algo_params'])

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    env_params = variant['env_params']
    env = SawyerXYZReachingEnv(**env_params)
    es = OUStrategy(action_space=env.action_space)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = DDPG(env,
                     qf=qf,
                     policy=policy,
                     exploration_policy=exploration_policy,
                     **variant['algo_params'])
    if ptu.gpu_enabled():
        algorithm.cuda()
    algorithm.train()
def example(variant):
    env = variant['env_class']()
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    es = OUStrategy(action_space=env.action_space, **variant['es_kwargs'])
    obs_dim = int(np.prod(env.observation_space.low.shape))
    action_dim = int(np.prod(env.action_space.low.shape))
    qf = FlattenMlp(input_size=obs_dim + action_dim,
                    output_size=1,
                    **variant['vf_params'])
    vf = FlattenMlp(input_size=obs_dim, output_size=1, **variant['vf_params'])
    policy = TanhMlpPolicy(input_size=obs_dim,
                           output_size=action_dim,
                           **variant['policy_params'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = N3DPG(env,
                      qf=qf,
                      vf=vf,
                      policy=policy,
                      exploration_policy=exploration_policy,
                      **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 5
0
def experiment(variant):
    env = NormalizedBoxEnv(variant['env_class']())

    obs_dim = int(np.prod(env.observation_space.low.shape))
    action_dim = int(np.prod(env.action_space.low.shape))
    gcm = FlattenMlp(input_size=env.goal_dim + obs_dim + action_dim + 1,
                     output_size=env.goal_dim,
                     **variant['gcm_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + env.goal_dim + 1,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    es = OUStrategy(
        action_space=env.action_space,
        theta=0.1,
        max_sigma=0.1,
        min_sigma=0.1,
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = HerReplayBuffer(env=env,
                                    **variant['her_replay_buffer_kwargs'])
    gcm_criterion = variant['gcm_criterion_class'](
        **variant['gcm_criterion_kwargs'])
    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['base_kwargs']['replay_buffer'] = replay_buffer
    algorithm = GcmDdpg(env,
                        gcm=gcm,
                        policy=policy,
                        exploration_policy=exploration_policy,
                        gcm_criterion=gcm_criterion,
                        **algo_kwargs)
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 6
0
def experiment(variant):
    env_params = variant['env_params']
    env = SawyerXYZReachingEnv(**env_params)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    hidden_size = variant['hidden_size']
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[hidden_size, hidden_size],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[hidden_size, hidden_size],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[hidden_size, hidden_size],
    )
    es = OUStrategy(action_space=env.action_space, **variant['es_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = TD3(env,
                    qf1=qf1,
                    qf2=qf2,
                    policy=policy,
                    exploration_policy=exploration_policy,
                    **variant['algo_kwargs'])
    if ptu.gpu_enabled():
        algorithm.cuda()
    algorithm.train()
def experiment(variant):
    if variant['multitask']:
        env = MultitaskFullVAEPoint2DEnv(
            **variant['env_kwargs'])  # used point2d-conv-sweep/run1/id4
        env = MultitaskToFlatEnv(env)
    # else:
    # env = Pusher2DEnv(**variant['env_kwargs'])
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space)
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            min_sigma=0.1,  # Constant sigma
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=0.1,
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = TD3(env,
                    qf1=qf1,
                    qf2=qf2,
                    policy=policy,
                    exploration_policy=exploration_policy,
                    **variant['algo_kwargs'])
    if variant["use_gpu"]:
        gpu_id = variant["gpu_id"]
        ptu.set_gpu_mode(True)
        ptu.set_device(gpu_id)
        algorithm.to(ptu.device)
        env._wrapped_env.vae.to(ptu.device)
    algorithm.train()
Esempio n. 8
0
def experiment(variant):
    # if variant['multitask']:
    #     env = MultitaskPoint2DEnv(**variant['env_kwargs'])
    #     env = MultitaskToFlatEnv(env)
    # else:
        # env = Pusher2DEnv(**variant['env_kwargs'])
    env_name = variant["env_name"]
    env = gym.make(env_name)
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space)
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            min_sigma=0.1,  # Constant sigma
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=0.1,
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = TD3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        **variant['algo_kwargs']
    )
    if ptu.gpu_enabled():
        algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 9
0
def experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space)
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            min_sigma=0.1,  # Constant sigma
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=0.1,
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    goal_dim = env.goal_dim
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = variant['replay_buffer_class'](
        env=env, **variant['replay_buffer_kwargs'])
    algorithm = HerTd3(env,
                       qf1=qf1,
                       qf2=qf2,
                       policy=policy,
                       exploration_policy=exploration_policy,
                       replay_buffer=replay_buffer,
                       **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 10
0
def her_td3_experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    if 'history_len' in variant:
        history_len = variant['history_len']
        env = MultiTaskHistoryEnv(env, history_len=history_len)
    if variant.get('make_silent_env', True):
        env = MultitaskEnvToSilentMultitaskEnv(env)
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space, **variant['es_kwargs'])
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    goal_dim = env.goal_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = variant['replay_buffer_class'](
        env=env, **variant['replay_buffer_kwargs'])
    algorithm = HerTd3(env,
                       qf1=qf1,
                       qf2=qf2,
                       policy=policy,
                       exploration_policy=exploration_policy,
                       replay_buffer=replay_buffer,
                       **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 11
0
def experiment(variant):
    env_params = variant['env_params']
    env = SawyerXYReachingEnv(**env_params)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[100, 100],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[100, 100],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[100, 100],
    )
    # es = GaussianStrategy(
    #     action_space=env.action_space,
    #     **variant['es_kwargs']
    # )
    # es = EpsilonGreedy(
    #     action_space=env.action_space,
    #     prob_random_action=0.2,
    # )
    es = OUStrategy(
        action_space=env.action_space,
        **variant['es_kwargs']
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = TD3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        **variant['algo_kwargs']
    )
    if ptu.gpu_enabled():
        algorithm.cuda()
    algorithm.train()
Esempio n. 12
0
def td3_experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    env = MultitaskToFlatEnv(env)
    if variant.get('make_silent_env', True):
        env = MultitaskEnvToSilentMultitaskEnv(env)
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space)
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            min_sigma=0.1,  # Constant sigma
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=0.1,
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = TD3(env,
                    qf1=qf1,
                    qf2=qf2,
                    policy=policy,
                    exploration_policy=exploration_policy,
                    **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    env = NormalizedBoxEnv(variant['env_class']())

    obs_dim = int(np.prod(env.observation_space.low.shape))
    action_dim = int(np.prod(env.action_space.low.shape))
    vectorized = variant['ddpg_tdm_kwargs']['tdm_kwargs']['vectorized']
    qf = StructuredQF(
        observation_dim=obs_dim,
        action_dim=action_dim,
        goal_dim=env.goal_dim,
        output_size=env.goal_dim if vectorized else 1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim + env.goal_dim + 1,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    es = OUStrategy(
        action_space=env.action_space,
        **variant['es_kwargs']
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = HerReplayBuffer(
        env=env,
        **variant['her_replay_buffer_kwargs']
    )
    qf_criterion = variant['qf_criterion_class'](
        **variant['qf_criterion_kwargs']
    )
    ddpg_tdm_kwargs = variant['ddpg_tdm_kwargs']
    ddpg_tdm_kwargs['ddpg_kwargs']['qf_criterion'] = qf_criterion
    algorithm = TdmDdpg(
        env,
        qf=qf,
        replay_buffer=replay_buffer,
        policy=policy,
        exploration_policy=exploration_policy,
        **variant['ddpg_tdm_kwargs']
    )
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 14
0
def experiment(variant):
    env = CylinderXYPusher2DEnv(**variant['env_kwargs'])
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    es = EpsilonGreedy(
        action_space=env.action_space,
        prob_random_action=0.1,
    )
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    goal_dim = env.goal_dim
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = SimpleHerReplayBuffer(env=env,
                                          **variant['replay_buffer_kwargs'])
    algorithm = HerTd3(env,
                       qf1=qf1,
                       qf2=qf2,
                       policy=policy,
                       exploration_policy=exploration_policy,
                       replay_buffer=replay_buffer,
                       **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 15
0
def experiment(variant):
    env = NormalizedBoxEnv(variant['env_class']())
    es = OUStrategy(
        action_space=env.action_space,
        max_sigma=0.1,
        min_sigma=0.1,  # Constant sigma
    )
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = TD3(env,
                    qf1=qf1,
                    qf2=qf2,
                    policy=policy,
                    exploration_policy=exploration_policy,
                    **variant['algo_kwargs'])
    env.set_goal(variant['goal'])
    if ptu.gpu_enabled():
        algorithm.cuda()
    algorithm.train()
Esempio n. 16
0
def experiment(variant):
    env = NormalizedBoxEnv(variant['env_class']())
    es = GaussianStrategy(
        action_space=env.action_space,
        **variant['es_kwargs']
    )
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = TD3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        **variant['algo_kwargs']
    )
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 17
0
def experiment(variant):
    data = joblib.load(GOOD_DDPG_POLICY_PATH)
    expert_policy = data['policy']

    env = NormalizedBoxEnv(variant['env_class']())
    es = OUStrategy(
        action_space=env.action_space,
        **variant['es_kwargs']
    )
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=expert_policy,
    )
    algorithm = DDPG(
        env,
        qf=qf,
        policy=policy,
        exploration_policy=exploration_policy,
        **variant['algo_kwargs']
    )
    if ptu.gpu_enabled():
        expert_policy.to(ptu.device)
        algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])

    action_dim = env.action_space.low.size
    obs_dim = env.observation_space.low.size

    qf = FlattenMlp(
        input_size=action_dim + obs_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    algorithm = FiniteHorizonDDPG(
        env,
        qf,
        policy,
        **variant['algo_kwargs']
    )
    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    env_params = variant['env_params']
    es_params = variant['es_params']
    env = SawyerXYZReachingEnv(**env_params)
    es = OUStrategy(action_space=env.action_space, **es_params)
    hidden_sizes = variant['hidden_sizes']

    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[hidden_sizes, hidden_sizes],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[hidden_sizes, hidden_sizes],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    if variant['env_params']['relative_pos_control']:
        variant['algo_params']['max_path_length'] = 3
        variant['algo_params']['num_steps_per_epoch'] = 15
        variant['algo_params']['num_steps_per_eval'] = 15
    algorithm = DDPG(env,
                     qf=qf,
                     policy=policy,
                     exploration_policy=exploration_policy,
                     **variant['algo_params'])

    if ptu.gpu_enabled():
        algorithm.cuda()
    algorithm.train()
Esempio n. 20
0
def experiment(variant):
    representation_size = 128
    output_classes = 20

    model_class = variant.get('model_class', TimestepPredictionModel)
    model = model_class(
        representation_size,
        # decoder_output_activation=decoder_activation,
        output_classes=output_classes,
        **variant['model_kwargs'],
    )
    # model = torch.nn.DataParallel(model)

    model_path = "/home/lerrel/data/s3doodad/facebook/models/rfeatures/multitask1/run2/id2/itr_4000.pt"
    # model = load_local_or_remote_file(model_path)
    state_dict = torch.load(model_path)
    model.load_state_dict(state_dict)
    model.to(ptu.device)

    demos = np.load("demo_v2_1.npy", allow_pickle=True)
    traj = demos[0]
    goal_image = traj["observations"][-1]["image_observation"].reshape(
        1, 3, 500, 300)
    goal_image = goal_image[:, ::-1, :, :].copy()  # flip bgr
    goal_latent = model.encoder(
        ptu.from_numpy(goal_image)).detach().cpu().numpy()
    reward_params = dict(goal_latent=goal_latent, )

    env = variant['env_class'](**variant['env_kwargs'])
    env = ImageEnv(
        env,
        recompute_reward=False,
        transpose=True,
        image_length=450000,
        reward_type="image_distance",
        # init_camera=sawyer_pusher_camera_upright_v2,
    )
    env = EncoderWrappedEnv(env, model, reward_params)

    expl_env = env  # variant['env_class'](**variant['env_kwargs'])
    eval_env = env  # variant['env_class'](**variant['env_kwargs'])

    observation_key = 'latent_observation'
    desired_goal_key = 'latent_observation'
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es = GaussianAndEpislonStrategy(
        action_space=expl_env.action_space,
        max_sigma=.2,
        min_sigma=.2,  # constant sigma
        epsilon=.3,
    )
    obs_dim = expl_env.observation_space.spaces['observation'].low.size
    goal_dim = expl_env.observation_space.spaces['desired_goal'].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    trainer = TD3(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  target_qf1=target_qf1,
                  target_qf2=target_qf2,
                  target_policy=target_policy,
                  **variant['trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])

    if variant.get("save_video", True):
        video_func = VideoSaveFunction(
            env,
            **variant["dump_video_kwargs"],
        )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
def her_td3_experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    observation_key = variant.get('observation_key', 'observation')
    desired_goal_key = variant.get('desired_goal_key', 'desired_goal')
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        **variant['replay_buffer_kwargs']
    )
    obs_dim = env.observation_space.spaces['observation'].low.size
    action_dim = env.action_space.low.size
    goal_dim = env.observation_space.spaces['desired_goal'].low.size
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            **variant['es_kwargs']
        )
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            min_sigma=0.1,  # Constant sigma
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=0.1,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = HerTd3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        replay_buffer=replay_buffer,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        **variant['algo_kwargs']
    )
    if ptu.gpu_enabled():
        qf1.to(ptu.device)
        qf2.to(ptu.device)
        policy.to(ptu.device)
        algorithm.to(ptu.device)
    algorithm.train()
def her_td3_experiment(variant):
    import multiworld.envs.mujoco
    import multiworld.envs.pygame
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.exploration_strategies.epsilon_greedy import EpsilonGreedy
    from railrl.exploration_strategies.gaussian_strategy import GaussianStrategy
    from railrl.exploration_strategies.ou_strategy import OUStrategy
    from railrl.torch.grill.launcher import get_video_save_func
    from railrl.torch.her.her_td3 import HerTd3
    from railrl.data_management.obs_dict_replay_buffer import (
        ObsDictRelabelingBuffer)

    if 'env_id' in variant:
        env = gym.make(variant['env_id'])
    else:
        env = variant['env_class'](**variant['env_kwargs'])

    imsize = 84
    env = MujocoGymToMultiEnv(env.env)  # unwrap TimeLimit
    env = ImageEnv(env,
                   non_presampled_goal_img_is_garbage=True,
                   recompute_reward=False)

    observation_key = variant['observation_key']
    desired_goal_key = variant['desired_goal_key']
    variant['algo_kwargs']['her_kwargs']['observation_key'] = observation_key
    variant['algo_kwargs']['her_kwargs']['desired_goal_key'] = desired_goal_key
    if variant.get('normalize', False):
        raise NotImplementedError()

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = env.observation_space.spaces[observation_key].low.size
    action_dim = env.action_space.low.size
    goal_dim = env.observation_space.spaces[desired_goal_key].low.size
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space, **variant['es_kwargs'])
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)

    use_images_for_q = variant["use_images_for_q"]
    use_images_for_pi = variant["use_images_for_pi"]

    qs = []
    for i in range(2):
        if use_images_for_q:
            image_q = MergedCNN(input_width=imsize,
                                input_height=imsize,
                                output_size=1,
                                input_channels=3,
                                added_fc_input_size=action_dim,
                                **variant['cnn_params'])
            q = ImageStateQ(image_q, None)
        else:
            state_q = FlattenMlp(input_size=action_dim + goal_dim,
                                 output_size=1,
                                 **variant['qf_kwargs'])
            q = ImageStateQ(None, state_q)
        qs.append(q)
    qf1, qf2 = qs

    if use_images_for_pi:
        image_policy = CNNPolicy(
            input_width=imsize,
            input_height=imsize,
            output_size=action_dim,
            input_channels=3,
            **variant['cnn_params'],
            output_activation=torch.tanh,
        )
        policy = ImageStatePolicy(image_policy, None)
    else:
        state_policy = TanhMlpPolicy(input_size=goal_dim,
                                     output_size=action_dim,
                                     **variant['policy_kwargs'])
        policy = ImageStatePolicy(None, state_policy)

    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = HerTd3(env,
                       qf1=qf1,
                       qf2=qf2,
                       policy=policy,
                       exploration_policy=exploration_policy,
                       replay_buffer=replay_buffer,
                       **variant['algo_kwargs'])
    if variant.get("save_video", False):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 23
0
def grill_her_td3_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy
    )
    from railrl.demos.her_td3bc import HerTD3BC
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    grill_preprocess_variant(variant)
    env = get_envs(variant)
    es = get_exploration_strategy(variant, env)

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (
            env.observation_space.spaces[observation_key].low.size
            + env.observation_space.spaces[desired_goal_key].low.size
    )
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )
    demo_train_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )
    demo_test_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )

    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant["render"]
    base_kwargs['render_during_eval'] = variant["render"]
    her_kwargs = algo_kwargs['her_kwargs']
    her_kwargs['observation_key'] = observation_key
    her_kwargs['desired_goal_key'] = desired_goal_key
    # algorithm = HerTd3(
    #     env,
    #     qf1=qf1,
    #     qf2=qf2,
    #     policy=policy,
    #     exploration_policy=exploration_policy,
    #     **variant['algo_kwargs']
    # )
    env.vae.to(ptu.device)

    algorithm = HerTD3BC(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        demo_train_buffer=demo_train_buffer,
        demo_test_buffer=demo_test_buffer,
        demo_path=variant["demo_path"],
        add_demo_latents=True,
        **variant['algo_kwargs']
    )

    if variant.get("save_video", True):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            algorithm.eval_policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        env.vae.to(ptu.device)

    algorithm.train()
Esempio n. 24
0
def ih_td3_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy
    )
    from railrl.misc.asset_loader import local_path_from_s3_or_local_path
    import joblib
    from railrl.torch.her.her_td3 import HerTd3
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    from railrl.state_distance.subgoal_planner import InfiniteHorizonSubgoalPlanner

    preprocess_rl_variant(variant)
    env = get_envs(variant)
    es = get_exploration_strategy(variant, env)

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")

    vectorized = 'vectorized' in env.reward_type
    variant['replay_buffer_kwargs']['vectorized'] = vectorized

    if 'ckpt' in variant:
        if 'ckpt_epoch' in variant:
            epoch = variant['ckpt_epoch']
            filename = local_path_from_s3_or_local_path(osp.join(variant['ckpt'], 'itr_%d.pkl' % epoch))
        else:
            filename = local_path_from_s3_or_local_path(osp.join(variant['ckpt'], 'params.pkl'))
        print("Loading ckpt from", filename)
        data = joblib.load(filename)
        qf1 = data['qf1']
        qf2 = data['qf2']
        policy = data['policy']
    else:
        obs_dim = (
                env.observation_space.spaces[observation_key].low.size
                + env.observation_space.spaces[desired_goal_key].low.size
        )
        action_dim = env.action_space.low.size

        env.reset()
        _, rew, _, _ = env.step(env.action_space.sample())
        if hasattr(rew, "__len__"):
            output_size = len(rew)
        else:
            output_size = 1

        qf1 = FlattenMlp(
            input_size=obs_dim + action_dim,
            output_size=output_size,
            **variant['qf_kwargs']
        )
        qf2 = FlattenMlp(
            input_size=obs_dim + action_dim,
            output_size=output_size,
            **variant['qf_kwargs']
        )
        policy = TanhMlpPolicy(
            input_size=obs_dim,
            output_size=action_dim,
            **variant['policy_kwargs']
        )
        policy.reward_scale = variant['algo_kwargs']['base_kwargs'].get('reward_scale', 1.0)

    eval_policy = None
    if variant.get('eval_policy', None) == 'SubgoalPlanner':
        eval_policy = InfiniteHorizonSubgoalPlanner(
            env,
            qf1,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            achieved_goal_key=achieved_goal_key,
            state_based=variant.get("do_state_exp", False),
            max_tau=variant['algo_kwargs']['base_kwargs']['max_path_length'] - 1,
            reward_scale=variant['algo_kwargs']['base_kwargs'].get('reward_scale', 1.0),
            **variant['SubgoalPlanner_kwargs']
        )

    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )

    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant.get("render", False)
    base_kwargs['render_during_eval'] = variant.get("render_during_eval", False)
    her_kwargs = algo_kwargs['her_kwargs']
    her_kwargs['observation_key'] = observation_key
    her_kwargs['desired_goal_key'] = desired_goal_key
    algorithm = HerTd3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        eval_policy=eval_policy,
        **variant['algo_kwargs']
    )

    if variant.get("test_ckpt", False):
        algorithm.post_epoch_funcs.append(get_update_networks_func(variant))

    vis_variant = variant.get('vis_kwargs', {})
    vis_list = vis_variant.get('vis_list', [])
    if vis_variant.get("save_video", True):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
            vis_list=vis_list,
            dont_terminate=True,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)

    if ptu.gpu_enabled():
        print("using GPU")
        algorithm.cuda()
        if not variant.get("do_state_exp", False):
            env.vae.cuda()

    env.reset()
    if not variant.get("do_state_exp", False):
        env.dump_samples(epoch=None)
        env.dump_latent_plots(epoch=None)
        env.dump_latent_plots(epoch=None)

    algorithm.train()
Esempio n. 25
0
def experiment(variant):
    expl_env = variant['env_class'](**variant['env_kwargs'])
    eval_env = variant['env_class'](**variant['env_kwargs'])

    observation_key = 'state_observation'
    desired_goal_key = 'state_desired_goal'
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es = GaussianAndEpislonStrategy(
        action_space=expl_env.action_space,
        max_sigma=.2,
        min_sigma=.2,  # constant sigma
        epsilon=.3,
    )
    obs_dim = expl_env.observation_space.spaces['observation'].low.size
    goal_dim = expl_env.observation_space.spaces['desired_goal'].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    target_policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )
    trainer = TD3(
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        target_policy=target_policy,
        **variant['trainer_kwargs']
    )
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs']
    )
    algorithm.to(ptu.device)
    algorithm.train()
def td3_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)

    from railrl.torch.td3.td3 import TD3 as TD3Trainer
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm

    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    # preprocess_rl_variant(variant)
    env = get_envs(variant)
    expl_env = env
    eval_env = env
    es = get_exploration_strategy(variant, env)

    if variant.get("use_masks", False):
        mask_wrapper_kwargs = variant.get("mask_wrapper_kwargs", dict())

        expl_mask_distribution_kwargs = variant[
            "expl_mask_distribution_kwargs"]
        expl_mask_distribution = DiscreteDistribution(
            **expl_mask_distribution_kwargs)
        expl_env = RewardMaskWrapper(env, expl_mask_distribution,
                                     **mask_wrapper_kwargs)

        eval_mask_distribution_kwargs = variant[
            "eval_mask_distribution_kwargs"]
        eval_mask_distribution = DiscreteDistribution(
            **eval_mask_distribution_kwargs)
        eval_env = RewardMaskWrapper(env, eval_mask_distribution,
                                     **mask_wrapper_kwargs)
        env = eval_env

    max_path_length = variant['max_path_length']

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = variant.get('achieved_goal_key',
                                    'latent_achieved_goal')
    # achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (env.observation_space.spaces[observation_key].low.size +
               env.observation_space.spaces[desired_goal_key].low.size)

    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])

    if variant.get("use_subgoal_policy", False):
        from railrl.policies.timed_policy import SubgoalPolicyWrapper

        subgoal_policy_kwargs = variant.get('subgoal_policy_kwargs', {})

        policy = SubgoalPolicyWrapper(wrapped_policy=policy,
                                      env=env,
                                      episode_length=max_path_length,
                                      **subgoal_policy_kwargs)
        target_policy = SubgoalPolicyWrapper(wrapped_policy=target_policy,
                                             env=env,
                                             episode_length=max_path_length,
                                             **subgoal_policy_kwargs)

    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        # use_masks=variant.get("use_masks", False),
        **variant['replay_buffer_kwargs'])

    trainer = TD3Trainer(policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         target_policy=target_policy,
                         **variant['td3_trainer_kwargs'])
    # if variant.get("use_masks", False):
    #     from railrl.torch.her.her import MaskedHERTrainer
    #     trainer = MaskedHERTrainer(trainer)
    # else:
    trainer = HERTrainer(trainer)
    if variant.get("do_state_exp", False):
        eval_path_collector = GoalConditionedPathCollector(
            eval_env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            # use_masks=variant.get("use_masks", False),
            # full_mask=True,
        )
        expl_path_collector = GoalConditionedPathCollector(
            expl_env,
            expl_policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            # use_masks=variant.get("use_masks", False),
        )
    else:
        eval_path_collector = VAEWrappedEnvPathCollector(
            env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            goal_sampling_mode=['evaluation_goal_sampling_mode'],
        )
        expl_path_collector = VAEWrappedEnvPathCollector(
            env,
            expl_policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            goal_sampling_mode=['exploration_goal_sampling_mode'],
        )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=env,
        evaluation_env=env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **variant['algo_kwargs'])

    vis_variant = variant.get('vis_kwargs', {})
    vis_list = vis_variant.get('vis_list', [])
    if variant.get("save_video", True):
        if variant.get("do_state_exp", False):
            rollout_function = rf.create_rollout_function(
                rf.multitask_rollout,
                max_path_length=max_path_length,
                observation_key=observation_key,
                desired_goal_key=desired_goal_key,
                # use_masks=variant.get("use_masks", False),
                # full_mask=True,
                # vis_list=vis_list,
            )
            video_func = get_video_save_func(
                rollout_function,
                env,
                policy,
                variant,
            )
        else:
            video_func = VideoSaveFunction(
                env,
                variant,
            )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        env.vae.to(ptu.device)
    algorithm.train()
Esempio n. 27
0
def her_td3_experiment(variant):
    import gym
    import multiworld.envs.mujoco
    import multiworld.envs.pygame
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.exploration_strategies.epsilon_greedy import EpsilonGreedy
    from railrl.exploration_strategies.gaussian_strategy import GaussianStrategy
    from railrl.exploration_strategies.ou_strategy import OUStrategy
    from railrl.torch.grill.launcher import get_video_save_func
    from railrl.demos.her_td3bc import HerTD3BC
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    from railrl.data_management.obs_dict_replay_buffer import (
        ObsDictRelabelingBuffer)

    if 'env_id' in variant:
        env = gym.make(variant['env_id'])
    else:
        env = variant['env_class'](**variant['env_kwargs'])

    observation_key = variant['observation_key']
    desired_goal_key = variant['desired_goal_key']
    variant['algo_kwargs']['her_kwargs']['observation_key'] = observation_key
    variant['algo_kwargs']['her_kwargs']['desired_goal_key'] = desired_goal_key
    if variant.get('normalize', False):
        raise NotImplementedError()

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    demo_train_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    demo_test_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = env.observation_space.spaces['observation'].low.size
    action_dim = env.action_space.low.size
    goal_dim = env.observation_space.spaces['desired_goal'].low.size
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space, **variant['es_kwargs'])
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = HerTD3BC(env,
                         qf1=qf1,
                         qf2=qf2,
                         policy=policy,
                         exploration_policy=exploration_policy,
                         demo_train_buffer=demo_train_buffer,
                         demo_test_buffer=demo_test_buffer,
                         replay_buffer=replay_buffer,
                         demo_path=variant["demo_path"],
                         **variant['algo_kwargs'])
    if variant.get("save_video", False):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)
    algorithm.to(ptu.device)
    algorithm.train()
Esempio n. 28
0
def her_td3_experiment(variant):
    import gym

    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import \
        PolicyWrappedWithExplorationStrategy
    from railrl.exploration_strategies.gaussian_and_epislon import \
        GaussianAndEpislonStrategy
    from railrl.launchers.launcher_util import setup_logger
    from railrl.samplers.data_collector import GoalConditionedPathCollector
    from railrl.torch.her.her import HERTrainer
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    from railrl.torch.td3.td3 import TD3
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
    import railrl.samplers.rollout_functions as rf
    from railrl.torch.grill.launcher import get_state_experiment_video_save_function

    if 'env_id' in variant:
        eval_env = gym.make(variant['env_id'])
        expl_env = gym.make(variant['env_id'])
    else:
        eval_env_kwargs = variant.get('eval_env_kwargs', variant['env_kwargs'])
        eval_env = variant['env_class'](**eval_env_kwargs)
        expl_env = variant['env_class'](**variant['env_kwargs'])

    observation_key = 'state_observation'
    desired_goal_key = 'state_desired_goal'
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es = GaussianAndEpislonStrategy(
        action_space=expl_env.action_space,
        max_sigma=.2,
        min_sigma=.2,  # constant sigma
        epsilon=.3,
    )
    obs_dim = expl_env.observation_space.spaces['observation'].low.size
    goal_dim = expl_env.observation_space.spaces['desired_goal'].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    trainer = TD3(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  target_qf1=target_qf1,
                  target_qf2=target_qf2,
                  target_policy=target_policy,
                  **variant['trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])

    if variant.get("save_video", False):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        video_func = get_state_experiment_video_save_function(
            rollout_function,
            eval_env,
            policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    rdim = variant["rdim"]
    vae_paths = {
        2:
        "/home/ashvin/data/s3doodad/ashvin/vae/point2d-conv-sweep2/run0/id1/params.pkl",
        4:
        "/home/ashvin/data/s3doodad/ashvin/vae/point2d-conv-sweep2/run0/id4/params.pkl"
    }
    vae_path = vae_paths[rdim]
    vae = joblib.load(vae_path)
    print("loaded", vae_path)

    if variant['multitask']:
        env = MultitaskImagePoint2DEnv(**variant['env_kwargs'])
        env = VAEWrappedEnv(env,
                            vae,
                            use_vae_obs=True,
                            use_vae_reward=False,
                            use_vae_goals=False)
        env = MultitaskToFlatEnv(env)
    # else:
    # env = Pusher2DEnv(**variant['env_kwargs'])
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space)
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            min_sigma=0.1,  # Constant sigma
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=0.1,
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[400, 300],
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = TD3(env,
                    training_env=env,
                    qf1=qf1,
                    qf2=qf2,
                    policy=policy,
                    exploration_policy=exploration_policy,
                    **variant['algo_kwargs'])
    print("use_gpu", variant["use_gpu"], bool(variant["use_gpu"]))
    if variant["use_gpu"]:
        gpu_id = variant["gpu_id"]
        ptu.set_gpu_mode(True)
        ptu.set_device(gpu_id)
        algorithm.to(ptu.device)
        env._wrapped_env.vae.to(ptu.device)
    algorithm.train()
Esempio n. 30
0
def td3_experiment(variant):
    import gym
    import multiworld.envs.mujoco
    import multiworld.envs.pygame
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.exploration_strategies.epsilon_greedy import EpsilonGreedy
    from railrl.exploration_strategies.gaussian_strategy import GaussianStrategy
    from railrl.exploration_strategies.ou_strategy import OUStrategy
    from railrl.torch.grill.launcher import get_state_experiment_video_save_function
    from railrl.torch.her.her_td3 import HerTd3
    from railrl.torch.td3.td3 import TD3
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    from railrl.data_management.obs_dict_replay_buffer import (
        ObsDictReplayBuffer)
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
    from railrl.samplers.data_collector.path_collector import ObsDictPathCollector

    if 'env_id' in variant:
        eval_env = gym.make(variant['env_id'])
        expl_env = gym.make(variant['env_id'])
    else:
        eval_env_kwargs = variant.get('eval_env_kwargs', variant['env_kwargs'])
        eval_env = variant['env_class'](**eval_env_kwargs)
        expl_env = variant['env_class'](**variant['env_kwargs'])

    observation_key = variant['observation_key']
    # desired_goal_key = variant['desired_goal_key']
    # variant['algo_kwargs']['her_kwargs']['observation_key'] = observation_key
    # variant['algo_kwargs']['her_kwargs']['desired_goal_key'] = desired_goal_key
    if variant.get('normalize', False):
        raise NotImplementedError()

    # achieved_goal_key = desired_goal_key.replace("desired", "achieved")

    replay_buffer = ObsDictReplayBuffer(
        env=eval_env,
        observation_key=observation_key,
        # desired_goal_key=desired_goal_key,
        # achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = eval_env.observation_space.spaces['observation'].low.size
    action_dim = eval_env.action_space.low.size
    goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=eval_env.action_space,
                        **variant['es_kwargs'])
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=eval_env.action_space,
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=eval_env.action_space,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    trainer = TD3(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  target_qf1=target_qf1,
                  target_qf2=target_qf2,
                  target_policy=target_policy,
                  **variant['trainer_kwargs'])
    observation_key = 'observation'
    desired_goal_key = 'desired_goal'
    eval_path_collector = ObsDictPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        # render=True,
        # desired_goal_key=desired_goal_key,
    )
    expl_path_collector = ObsDictPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        # render=True,
        # desired_goal_key=desired_goal_key,
    )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])

    # if variant.get("save_video", False):
    #     rollout_function = rf.create_rollout_function(
    #         rf.multitask_rollout,
    #         max_path_length=algorithm.max_path_length,
    #         observation_key=observation_key,
    #         desired_goal_key=algorithm.desired_goal_key,
    #     )
    #     video_func = get_state_experiment_video_save_function(
    #         rollout_function,
    #         env,
    #         policy,
    #         variant,
    #     )
    #     algorithm.post_epoch_funcs.append(video_func)
    algorithm.to(ptu.device)
    algorithm.train()