def do_fold_libsvm(bs = 2**15): # Low memory print('Loading') read = pd.HDFStore('data/train_folds.h5', mode='r') for i in xrange(10): print('Fold {}'.format(i)) print('Training set') name = 'train_fold_{}'.format(i) nrows = read.get_storer(name).nrows pb = progressbar.ProgressBar(maxval=nrows//bs).start() with open('train_folds_{}.txt'.format(i), 'wb') as out: for j,chunk in enumerate(read.select(name, iterator=True, chunksize=bs)): pb.update(j) X = chunk.drop('Expected', axis=1).values.astype('float') y = chunk['Expected'].values.clip(0,70).astype('int') RainCompetition.to_libsvm(X, y, out) pb.finish() print('Validation set') name = 'valid_fold_{}'.format(i) nrows = read.get_storer(name).nrows pb = progressbar.ProgressBar(maxval=nrows//bs).start() with open('valid_folds_{}.txt'.format(i), 'wb') as out: for j,chunk in enumerate(read.select(name, iterator=True, chunksize=bs)): pb.update(j) X = chunk.drop('Expected', axis=1).values.astype('float') y = chunk['Expected'].values.clip(0,70).astype('int') RainCompetition.to_libsvm(X, y, out) pb.finish()
('dense1', DenseLayer), ('dropout1', DropoutLayer), ('dense2', DenseLayer), ('dropout2', DropoutLayer), ('dense3', DenseLayer), ('output', DenseLayer)], input_shape=(None, num_features), dense1_num_units=512, dropout1_p=0.5, dense2_num_units=512, dropout2_p=0.5, dense3_num_units=512, output_num_units=num_classes, output_nonlinearity=softmax, update=nesterov_momentum, eval_size=0.2, verbose=1, update_learning_rate=theano.shared(float32(0.01)), update_momentum=theano.shared(float32(0.9)), on_epoch_finished=[ AdjustVariable('update_learning_rate', start=0.01, stop=0.00001), AdjustVariable('update_momentum', start=0.9, stop=0.999), EarlyStopping(), ], max_epochs=10000,) net0.initialize() # do_fit(net0, 'data/train_impu_norm_shuf.csv', n_iter=1) net0.load_weights_from('nn_weights') RainCompetition.do_predict(net0, RainCompetition.__data__['test_normalized'], 'data/rain_nn_pred.csv')