Esempio n. 1
0
def portionBucket():
    cryptorand = SystemRandom()
    print("Portioning images from bucket..")
    if len(os.listdir("PLACE_IMAGES_HERE/normal/")) > 0:
        print("Portioning normal images..")
        transferlist = list(Path('.').glob("PLACE_IMAGES_HERE/normal/*.jpg"))
        cryptorand.shuffle(transferlist)
        portionlimit = transferlist.__len__() / 3
        index = 0
        for s in transferlist:
            index += 1
            if index < portionlimit:
                os.rename(s, "internal/test_set/normal/" + str(s)[25:])
            else:
                os.rename(s, "internal/training_set/normal/" + str(s)[25:])
    else:
        print("No normal images found.")
    if len(os.listdir("PLACE_IMAGES_HERE/abnormal/")) > 0:
        print("Portioning abnormal images..")
        transferlist = list(Path('.').glob("PLACE_IMAGES_HERE/abnormal/*.jpg"))
        cryptorand.shuffle(transferlist)
        portionlimit = transferlist.__len__() / 3
        index = 0
        for s in transferlist:
            index += 1
            if index < portionlimit:
                os.rename(s, "internal/test_set/abnormal/" + str(s)[27:])
            else:
                os.rename(s, "internal/training_set/abnormal/" + str(s)[27:])
    else:
        print("No abnormal images found.")
    print("Images portioned.")
Esempio n. 2
0
    def generate_groups(self):
        """
        Generates the groups based on a randomization algorithm.
        :return: the generated groups: a list of lists (names)
        """

        if not self.names:
            raise AttributeError("Could not find names list. Try re-initializing Engine with valid filepath.")

        groups = []

        cryptogen = SystemRandom()
        cryptogen.shuffle(self.names)

        current_group = []
        for name in self.names:

            current_group.append(name)

            is_last_name = self.names.index(name) == len(self.names) - 1
            is_group_full = len(current_group) == self.group_size

            if is_group_full or is_last_name:
                groups.append(current_group)
                current_group = []

        logging.info("Created {} groups with max size {}.".format(len(groups), self.group_size))

        return groups
Esempio n. 3
0
    def generate_groups(self):
        """
        Generates the groups based on a randomization algorithm.
        :return: the generated groups: a list of lists (names)
        """

        if not self.names:
            raise AttributeError(
                "Could not find names list. Try re-initializing Engine with valid filepath."
            )

        groups = []

        cryptogen = SystemRandom()
        cryptogen.shuffle(self.names)

        current_group = []
        for name in self.names:

            current_group.append(name)

            is_last_name = self.names.index(name) == len(self.names) - 1
            is_group_full = len(current_group) == self.group_size

            if is_group_full or is_last_name:
                groups.append(current_group)
                current_group = []

        logging.info("Created {} groups with max size {}.".format(
            len(groups), self.group_size))

        return groups
def main(args):
    r = SystemRandom()
    try:
        try:
            _min = int(args[1])
            _max = int(args[2])
        except:
            _min = 0
            _max = int(args[1])
    except:
        _min = 0
        _max = 10
    try:
        if args[0] == 'simple':
            l = list(string.letters + string.digits)
            r.shuffle(l)
            return ''.join(l[0:_max])
        if args[0] == 'strong':
            l = list(string.letters + string.digits + string.punctuation)
            r.shuffle(l)
            return ''.join(l[0:_max])
        if args[0] == 'integer':
            return r.randint(_min, _max)
        return r.uniform(_min, _max)
    except:
        return r.random()
Esempio n. 5
0
def tcp_scan(ips, ports, randomize=True):
    loop = asyncio.get_event_loop()
    if randomize:
        rdev = SystemRandom()
        ips = rdev.shuffle(ips)
        ports = rdev.shuffle(ports)

    tcp_Scanner_run(tcp_scanner(ip, port) for port in ports for ip in ips)
def scan(ips, ports, randomize=False):
    """Scan the ports"""
    loop = asyncio.get_event_loop()
    if randomize:
        rdev = SystemRandom()
        ips = rdev.shuffle(ips)
        ports = rdev.shuffle(ports)

    # let's pass list of task, not only one
    run([scanner(ip, port) for port in ports for ip in ips])
    def __init__(self, mode='test', limiter=0, shuffle_en=False):
        name = 'waymo'
        self.type = 'lidar'
        db.__init__(self, name, mode)
        self._train_scenes = []
        self._val_scenes = []
        self._test_scenes = []
        if (mode == 'test'):
            self._tod_filter_list = cfg.TEST.TOD_FILTER_LIST
        else:
            self._tod_filter_list = cfg.TRAIN.TOD_FILTER_LIST
        self._uncertainty_sort_type = cfg.UC.SORT_TYPE
        self._draw_width = int((cfg.LIDAR.X_RANGE[1] - cfg.LIDAR.X_RANGE[0]) *
                               (1 / cfg.LIDAR.VOXEL_LEN))
        self._draw_height = int((cfg.LIDAR.Y_RANGE[1] - cfg.LIDAR.Y_RANGE[0]) *
                                (1 / cfg.LIDAR.VOXEL_LEN))
        self._num_slices = cfg.LIDAR.NUM_SLICES
        self._bev_slice_locations = [1, 2, 3, 4, 5, 7]
        self._filetype = 'npy'
        self._imtype = 'PNG'
        self._scene_sel = True
        #For now one large cache file is OK, but ideally just take subset of actually needed data and cache that. No need to load nusc every time.

        self._classes = (
            'dontcare',  # always index 0
            'vehicle.car')
        # 'human.pedestrian',
        #'vehicle.bicycle')
        self.config = {'cleanup': True, 'matlab_eval': False, 'rpn_file': None}
        self._class_to_ind = dict(
            list(zip(self.classes, list(range(self.num_classes)))))

        self._train_index = os.listdir(
            os.path.join(self._devkit_path, 'train', 'point_clouds'))
        self._val_index = os.listdir(
            os.path.join(self._devkit_path, 'val', 'point_clouds'))
        self._val_index.sort(key=natural_keys)
        rand = SystemRandom()
        if (shuffle_en):
            print('shuffling pc indices')
            rand.shuffle(self._train_index)
            rand.shuffle(self._val_index)
        if (limiter != 0):
            if (limiter < len(self._val_index)):
                self._val_index = self._val_index[:limiter]
            if (limiter < len(self._train_index)):
                self._train_index = self._train_index[:limiter]
            if (limiter < len(self._test_index)):
                self._test_index = self._test_index[:limiter]
        #if(18000 < len(self._val_index)):
        #    self._val_index   = self._val_index[:18000]
        assert os.path.exists(
            self._devkit_path), 'waymo dataset path does not exist: {}'.format(
                self._devkit_path)
Esempio n. 8
0
def bogo_solve(constraints):
    names = get_names(constraints)
    rng = SystemRandom()
    while verify(names, constraints) != []:
        rng.shuffle(names)

    s = ""
    for n in names:
        s += n + " "

    print "Ordering: {}".format(s)
Esempio n. 9
0
def fillBucket():
    cryptorand = SystemRandom()
    print("Putting images into bucket..")
    if len(os.listdir("internal/training_set/normal")) > 0:
        print("Taking normal images..")
        transferlist = list(
            Path('.').glob("internal/training_set/normal/*.jpg"))
        cryptorand.shuffle(transferlist)
        for s in transferlist:
            os.rename(s, "PLACE_IMAGES_HERE/normal/" + str(s)[29:])
        transferlist = list(Path('.').glob("internal/test_set/normal/*.jpg"))
        cryptorand.shuffle(transferlist)
        for s in transferlist:
            os.rename(s, "PLACE_IMAGES_HERE/normal/" + str(s)[25:])
    else:
        print("No normal images found.")
    if len(os.listdir("internal/training_set/abnormal")) > 0:
        print("Taking abnormal images..")
        transferlist = list(
            Path('.').glob("internal/training_set/abnormal/*.jpg"))
        cryptorand.shuffle(transferlist)
        for s in transferlist:
            os.rename(s, "PLACE_IMAGES_HERE/abnormal/" + str(s)[31:])
        transferlist = list(Path('.').glob("internal/test_set/abnormal/*.jpg"))
        cryptorand.shuffle(transferlist)
        for s in transferlist:
            os.rename(s, "PLACE_IMAGES_HERE/abnormal/" + str(s)[27:])
    else:
        print("No abnormal images found.")
    print("Images moved to bucket.")
Esempio n. 10
0
def init_captcha():
    dice = SystemRandom()
    normalset, oddballset = dice.sample(current_app.captcha_data, 2)
    normals = dice.sample(normalset, NORMALS)
    oddballs = dice.sample(oddballset - normalset, ODDBALLS)
    united = normals + oddballs
    dice.shuffle(united)
    challenge = ' '.join(united)
    expiry = datetime.today() + AUTHENTICATION_TIME
    session['captcha-answer'] = map(lambda s: s.lower(), oddballs)
    session['captcha-expires'] = expiry
    if 'captcha-quarantine' in session:
        del session['captcha-quarantine']
        session.modified = True
    return {'captcha_expires': str(expiry), 'captcha_challenge': challenge}
def generate_wordlist(num_words, num_letters, num_digits, num_symbols):
    rng = SystemRandom()
    wordlist_set = set()

    for _ in range(num_words):
        letters = ''.join(
            rng.choice(string.ascii_letters) for _ in range(num_letters))
        digits = ''.join(rng.choice(string.digits) for _ in range(num_digits))
        symbols = ''.join(
            rng.choice(string.punctuation) for _ in range(num_symbols))
        word = letters + digits + symbols

        word_l = list(word)
        rng.shuffle(word_l)
        wordlist_set.add(''.join(word_l))

    return wordlist_set
Esempio n. 12
0
def generate_sequence():

    cryptorand = SystemRandom()

    sequence = []

    for i in range(22):
        flip = random.randint(1, 2)
        if flip == 1:
            sequence.append("0")
        else:
            sequence.append("O")

    random.seed()
    cryptorand.shuffle(sequence)

    return "O" + "".join(sequence)
def start(format):

    random = SystemRandom()

    randomCharacterList = formatDict.get(format)[
        1]  # Get encoding alphabet based on user input
    random.shuffle(
        randomCharacterList)  # Randomize the alphabet order for extra random
    keyListLength = len(randomCharacterList)
    keyList = []

    for _ in range(
            formatDict.get(format)
        [0]):  # Add random characters from the encoding alphabet to a list
        i = random.randint(1, keyListLength)
        n = randomCharacterList[i - 1]
        keyList.append(n)

    privateKey = "".join(keyList)  # Join the character list into a key string

    return privateKey
    def __init__(self, mode='test', limiter=0):
        name = 'nuscenes'
        db.__init__(self, name)
        self._train_scenes = []
        self._val_scenes = []
        self._test_scenes = []
        self._train_index = []
        self._val_index = []
        self._test_index = []
        self._devkit_path = self._get_default_path()
        self._mode = mode
        self._nusc = None
        self._scene_sel = True
        #For now one large cache file is OK, but ideally just take subset of actually needed data and cache that. No need to load nusc every time.

        self._classes = (
            'dontcare',  # always index 0
            'vehicle.car',
            'human.pedestrian',
            'vehicle.bicycle')

        self.config = {'cleanup': True, 'matlab_eval': False, 'rpn_file': None}
        self._class_to_ind = dict(
            list(zip(self.classes, list(range(self.num_classes)))))
        self._val_scenes = create_splits_scenes()['val']
        self._train_scenes = create_splits_scenes()['train']
        self._test_scenes = create_splits_scenes()['test']
        #TODO: create custom scene list
        #print(self._train_scenes)
        for rec in self.nusc.sample_data:
            if (rec['channel'] == 'CAM_FRONT' and rec['is_key_frame'] is True):
                rec_tmp = deepcopy(rec)
                #Reverse lookup, getting the overall sample from the picture sample token, to get the scene information.
                scene_name = self.nusc.get(
                    'scene',
                    self.nusc.get('sample',
                                  rec['sample_token'])['scene_token'])['name']
                desc = self.nusc.get(
                    'scene',
                    self.nusc.get('sample', rec['sample_token'])
                    ['scene_token'])['description'].lower()
                if (self._scene_sel and 'night' not in desc
                        and 'rain' not in desc and 'cones' not in desc):
                    sample = self.nusc.get('sample', rec['sample_token'])
                    rec_tmp['anns'] = sample['anns']
                    rec_tmp['lidar_token'] = sample['data']['LIDAR_TOP']
                    if (scene_name in self._train_scenes):
                        self._train_index.append(rec_tmp)
                    elif (scene_name in self._val_scenes):
                        self._val_index.append(rec_tmp)
                    elif (scene_name in self._train_scenes):
                        self._test_index.append(rec_tmp)
        rand = SystemRandom()
        #Get global image info
        if (mode == 'train'):
            img_index = self._train_index
            rand.shuffle(self._val_index)
        elif (mode == 'val'):
            img_index = self._val_index
        elif (mode == 'test'):
            img_index = self._test_index
        self._imwidth = img_index[0]['width']
        self._imheight = img_index[0]['height']
        self._imtype = img_index[0]['fileformat']
        rand = SystemRandom()
        rand.shuffle(img_index)
        if (limiter != 0):
            img_index = img_index[:limiter]
        if (mode == 'train'):
            self._train_index = img_index
        elif (mode == 'val'):
            self._val_index = img_index
        elif (mode == 'test'):
            self._test_index = img_index
        assert os.path.exists(
            self._devkit_path
        ), 'nuscenes dataset path does not exist: {}'.format(self._devkit_path)
Esempio n. 15
0
pseudo_id = namedtuple('pseudo_id', ['pseudonym', 'code', 'cryptonym'])

voter_list = voters_in_text.strip().splitlines()
word_list = unique_words.strip().splitlines()

random = SystemRandom()

random_words = random.sample(word_list, len(voter_list))
random_keys = random.sample(code_range, len(voter_list))

print("There are %d voters in upcoming election:\n" % len(voter_list))

for voter in voter_list:
    print(voter)

random.shuffle(voter_list)

print()

print("Distributing pseudonyms...\n")

pseudo = []

for i in range(len(voter_list)):
    current = pseudo_id(random_words[i], str(random_keys[i]),
                        random_words[i] + str(random_keys[i]))
    pseudo.append(current)

i = -1

try:
Esempio n. 16
0
def shuffle(elements):
    cryptorand = SystemRandom()
    cryptorand.shuffle(elements)
 def __init__(self, nboxes, nguess):
     self.nboxes = nboxes
     self.nguess = nguess
     rnd = SystemRandom()
     self.boxes = list(range(1, nboxes + 1))
     rnd.shuffle(self.boxes)
    def __init__(self, mode='test',limiter=0, shuffle_en=True):
        name = 'kitti'
        db.__init__(self, name, mode)
        self._devkit_path = self._get_default_path()
        self._data_path = self._devkit_path
        self._mode = mode
        self._uncertainty_sort_type = cfg.UC.SORT_TYPE
        self._draw_width = int((cfg.LIDAR.X_RANGE[1] - cfg.LIDAR.X_RANGE[0])*(1/cfg.LIDAR.VOXEL_LEN))
        self._draw_height = int((cfg.LIDAR.Y_RANGE[1] - cfg.LIDAR.Y_RANGE[0])*(1/cfg.LIDAR.VOXEL_LEN))
        self._num_slices = cfg.LIDAR.NUM_SLICES
        self._frame_sub_dir = 'velodyne'
        self._train_dir = os.path.join(self._data_path, 'training', self._frame_sub_dir)
        self._val_dir   = os.path.join(self._data_path, 'training', self._frame_sub_dir)
        self._test_dir   = os.path.join(self._data_path, 'testing', self._frame_sub_dir)
        self._split_dir  = os.path.join(self._data_path, 'splits')
        self._test_index = open(self._split_dir+'/test.txt').read().splitlines()
        self._train_index = open(self._split_dir+'/train.txt').read().splitlines()
        self._val_index = open(self._split_dir+'/val.txt').read().splitlines()
        self._filetype   = 'bin'
        self._imtype   = 'PNG'
        self.type = 'lidar'
        self._bev_slice_locations = [1,2,3,4,5,7]
        self._mode = mode
        #Backwards compatibility
        self._train_sub_folder = 'training'
        self._val_sub_folder = 'training'
        self._test_sub_folder = 'testing'
        self._classes = (
            'dontcare',  # always index 0
            #'Pedestrian',
            #'Cyclist',
            'Car')

        self.config = {
            'cleanup': True,
            'matlab_eval': False,
            'rpn_file': None
        }
        self._class_to_ind = dict(
            list(zip(self.classes, list(range(self.num_classes)))))
        #self._train_index = sorted([d for d in os.listdir(self._train_dir) if d.endswith('.bin')])
        #self._val_index   = sorted([d for d in os.listdir(self._val_dir) if d.endswith('.bin')])
        #self._test_index  = sorted([d for d in os.listdir(self._test_dir) if d.endswith('.bin')])
        #Limiter
        if(limiter != 0):
            if(limiter < len(self._val_index)):
                self._val_index   = self._val_index[:limiter]
            if(limiter < len(self._train_index)):
                self._train_index = self._train_index[:limiter]
            if(limiter < len(self._test_index)):
                self._test_index = self._test_index[:limiter]
        rand = SystemRandom()
        if(shuffle_en):
            print('shuffling frame indices')
            rand.shuffle(self._val_index)
            rand.shuffle(self._train_index)
            rand.shuffle(self._test_index)
        assert os.path.exists(self._devkit_path), \
            'Kitti dataset path does not exist: {}'.format(self._devkit_path)
        assert os.path.exists(self._data_path), \
            'Path does not exist: {}'.format(self._data_path)
    def __init__(self, mode='test', limiter=0, shuffle_en=True):
        name = 'cadc'
        db.__init__(self, name, mode)
        self._devkit_path = self._get_default_path()
        self._data_path = self._devkit_path
        self._mode = mode
        self._uncertainty_sort_type = cfg.UC.SORT_TYPE
        self._frame_sub_dir = 'image_00'
        if (mode == 'test'):
            self._tod_filter_list = cfg.TEST.CADC_FILTER_LIST
        else:
            self._tod_filter_list = cfg.TRAIN.CADC_FILTER_LIST
        scene_desc_filename = os.path.join(self._data_path,
                                           'cadc_scene_description.csv')
        self._load_scene_meta(scene_desc_filename)
        self._train_dir = os.path.join(self._data_path, 'train',
                                       self._frame_sub_dir)
        self._val_dir = os.path.join(self._data_path, 'val',
                                     self._frame_sub_dir)
        #self._test_dir   = os.path.join(self._data_path, 'testing', self._frame_sub_dir)
        crop_top = 150
        crop_bottom = 250
        self._imwidth = 1280
        self._imheight = 1024 - crop_top - crop_bottom
        self._imtype = 'png'
        self._filetype = 'png'
        self.type = 'image'
        self._mode = mode
        #Backwards compatibility
        #self._train_sub_folder = 'training'
        #self._val_sub_folder = 'evaluation'
        #self._test_sub_folder = 'testing'
        self._classes = (
            'dontcare',  # always index 0
            #'Pedestrian',
            #'Cyclist',
            'Car')

        self.config = {'cleanup': True, 'matlab_eval': False, 'rpn_file': None}
        self._class_to_ind = dict(
            list(zip(self.classes, list(range(self.num_classes)))))
        self._train_index = sorted(
            [d for d in os.listdir(self._train_dir) if d.endswith('.png')])
        self._val_index = sorted(
            [d for d in os.listdir(self._val_dir) if d.endswith('.png')])
        #self._test_index  = sorted([d for d in os.listdir(self._test_dir) if d.endswith('.png')])
        #Limiter
        if (limiter != 0):
            if (limiter < len(self._val_index)):
                self._val_index = self._val_index[:limiter]
            if (limiter < len(self._train_index)):
                self._train_index = self._train_index[:limiter]
            #if(limiter < len(self._test_index)):
            #    self._test_index = self._test_index[:limiter]
        rand = SystemRandom()
        if (shuffle_en):
            print('shuffling image indices')
            rand.shuffle(self._val_index)
            rand.shuffle(self._train_index)
            #rand.shuffle(self._test_index)
        assert os.path.exists(self._devkit_path), \
            'cadc dataset path does not exist: {}'.format(self._devkit_path)
        assert os.path.exists(self._data_path), \
            'Path does not exist: {}'.format(self._data_path)
Esempio n. 20
0
#!/usr/bin/env python3

from string import ascii_lowercase
from itertools import product
from random import SystemRandom
from math import ceil, log
from secretstuff import FLAG

random = SystemRandom()
ALPHABET = ascii_lowercase + "_"
assert all(char in ALPHABET for char in FLAG)

bigrams = [''.join(bigram) for bigram in product(ALPHABET, repeat=2)]
random.shuffle(bigrams)

S_box = {}
for i in range(len(ALPHABET)):
    for j in range(len(ALPHABET)):
        S_box[ALPHABET[i]+ALPHABET[j]] = bigrams[i*len(ALPHABET) + j]

assert len(set(S_box.keys())) == 27*27

def encrypt(message):
    if len(message) % 2:
        message += "_"

    message = list(message)
    rounds = int(2 * ceil(log(len(message), 2))) # The most secure amount of rounds

    for round in range(rounds):
        # Encrypt
Esempio n. 21
0
from random import SystemRandom
random = SystemRandom()
lista = []
i,n = 0,0
qtd = int(input('Informe a quantidade de alunos na sala : '))
while i < qtd:
    a = str(input('Digite o nome do {:2}° aluno : '.format(i+1)))
    lista.append(a)
    i+=1
random.shuffle(lista)
print('\nA lista sorteada foi :')
while n < qtd:
    print('{:2}° aluno escolhido : {}'.format(n+1,lista[n]))
    n+=1


    def __init__(self, mode='test', limiter=0, shuffle_en=True):
        name = 'cadc'
        db.__init__(self, name, mode)
        self._devkit_path = self._get_default_path()
        self._data_path = self._devkit_path
        self._mode = mode
        if (mode == 'test'):
            self._tod_filter_list = cfg.TEST.CADC_FILTER_LIST
        else:
            self._tod_filter_list = cfg.TRAIN.CADC_FILTER_LIST
        scene_desc_filename = os.path.join(self._data_path,
                                           'cadc_scene_description.csv')
        self._load_scene_meta(scene_desc_filename)
        self._uncertainty_sort_type = cfg.UC.SORT_TYPE
        self._draw_width = int((cfg.LIDAR.X_RANGE[1] - cfg.LIDAR.X_RANGE[0]) *
                               (1 / cfg.LIDAR.VOXEL_LEN))
        self._draw_height = int((cfg.LIDAR.Y_RANGE[1] - cfg.LIDAR.Y_RANGE[0]) *
                                (1 / cfg.LIDAR.VOXEL_LEN))
        self._num_slices = cfg.LIDAR.NUM_SLICES
        self._frame_sub_dir = 'point_clouds'
        self._annotation_sub_dir = 'annotation_00'
        self._calib_sub_dir = 'calib'
        self._train_dir = os.path.join(self._data_path, 'train',
                                       self._frame_sub_dir)
        self._val_dir = os.path.join(self._data_path, 'val',
                                     self._frame_sub_dir)
        #self._test_dir   = os.path.join(self._data_path, 'testing', self._frame_sub_dir)
        self._filetype = 'bin'
        self._imtype = 'PNG'
        self.type = 'lidar'
        self._bev_slice_locations = [1, 2, 3, 4, 5, 7]
        self._mode = mode
        #Backwards compatibility
        #self._train_sub_folder = 'training'
        #self._val_sub_folder = 'evaluation'
        #self._test_sub_folder = 'testing'
        self._classes = (
            'dontcare',  # always index 0
            #'Pedestrian',
            #'Cyclist',
            'Car')

        self.config = {'cleanup': True, 'matlab_eval': False, 'rpn_file': None}
        self._class_to_ind = dict(
            list(zip(self.classes, list(range(self.num_classes)))))
        self._train_index = sorted(
            [d for d in os.listdir(self._train_dir) if d.endswith('.bin')])
        self._val_index = sorted(
            [d for d in os.listdir(self._val_dir) if d.endswith('.bin')])
        #self._test_index  = sorted([d for d in os.listdir(self._test_dir) if d.endswith('.bin')])
        #Limiter
        if (limiter != 0):
            if (limiter < len(self._val_index)):
                self._val_index = self._val_index[:limiter]
            if (limiter < len(self._train_index)):
                self._train_index = self._train_index[:limiter]
            #if(limiter < len(self._test_index)):
            #    self._test_index = self._test_index[:limiter]
        rand = SystemRandom()
        if (shuffle_en):
            print('shuffling frame indices')
            rand.shuffle(self._val_index)
            rand.shuffle(self._train_index)
            #rand.shuffle(self._test_index)
        assert os.path.exists(self._devkit_path), \
            'cadc dataset path does not exist: {}'.format(self._devkit_path)
        assert os.path.exists(self._data_path), \
            'Path does not exist: {}'.format(self._data_path)
Esempio n. 23
0
    def __init__(self, mode='test', limiter=0, shuffle_en=True):
        name = 'kitti'
        db.__init__(self, name, mode)
        self._devkit_path = self._get_default_path()
        self._data_path = self._devkit_path
        self._mode = mode
        self._uncertainty_sort_type = cfg.UC.SORT_TYPE
        self._frame_sub_dir = 'image_2'
        self._train_dir = os.path.join(self._data_path, 'training',
                                       self._frame_sub_dir)
        self._val_dir = os.path.join(self._data_path, 'training',
                                     self._frame_sub_dir)
        self._test_dir = os.path.join(self._data_path, 'testing',
                                      self._frame_sub_dir)
        self._split_dir = os.path.join(self._data_path, 'splits')
        self._imwidth = 1242
        self._imheight = 375
        self._imtype = 'png'
        self._filetype = 'png'
        self.type = 'image'
        self._mode = mode
        #Backwards compatibility
        self._train_sub_folder = 'training'
        self._val_sub_folder = 'training'
        self._test_sub_folder = 'testing'
        self._classes = (
            'dontcare',  # always index 0
            #'Pedestrian',
            #'Cyclist',
            'Car')

        self.config = {'cleanup': True, 'matlab_eval': False, 'rpn_file': None}
        self._class_to_ind = dict(
            list(zip(self.classes, list(range(self.num_classes)))))

        self._test_index = open(self._split_dir +
                                '/test.txt').read().splitlines()
        self._train_index = open(self._split_dir +
                                 '/train.txt').read().splitlines()
        self._val_index = open(self._split_dir +
                               '/val.txt').read().splitlines()

        #self._train_index = self._train_index + self._val_index[250:]
        #self._val_index   = self._val_index[:250]
        #self._train_index = sorted([d for d in os.listdir(self._train_dir) if d.endswith('.png')])
        #self._val_index   = sorted([d for d in os.listdir(self._val_dir) if d.endswith('.png')])
        #self._test_index  = sorted([d for d in os.listdir(self._test_dir) if d.endswith('.png')])
        #Limiter
        if (limiter != 0):
            if (limiter < len(self._val_index)):
                self._val_index = self._val_index[:limiter]
            if (limiter < len(self._train_index)):
                self._train_index = self._train_index[:limiter]
            if (limiter < len(self._test_index)):
                self._test_index = self._test_index[:limiter]
        rand = SystemRandom()
        if (shuffle_en):
            print('shuffling image indices')
            rand.shuffle(self._val_index)
            rand.shuffle(self._train_index)
            rand.shuffle(self._test_index)
        assert os.path.exists(self._devkit_path), \
            'Kitti dataset path does not exist: {}'.format(self._devkit_path)
        assert os.path.exists(self._data_path), \
            'Path does not exist: {}'.format(self._data_path)
Esempio n. 24
0
class Encryptor(object):
    def __init__(self, characters=None, backlog=-1):
        self.random = SystemRandom()
        if characters is None:
            unicode_chars = [chr(i) for i in range(1, 1028)]
            self.characters = [c for c in unicode_chars]
            self.characters.remove('\r')
            self.characters.remove('\f')
            self.random.shuffle(self.characters)

        self.rev_ord = {}
        self.ord = {}

        self.range = len(self.characters)
        self.make_key(self.characters)
        self.mix = backlog

    def load_key_file(self, filepath='key'):
        with open(filepath, 'r') as f:
            key_data = f.read()
            self.characters = [c for c in key_data]
            self.make_key(self.characters)
        return self

    def save_key_file(self, filepath='key'):
        with open(filepath, 'w') as f:
            f.write(''.join(self.characters))
        return self

    def make_key(self, characters):
        if characters is not self.characters:
            self.characters = characters

        self.rev_ord = {}
        self.ord = {}

        for i, char in enumerate(self.characters):
            self.rev_ord[i + 1] = char

        for key, value in self.rev_ord.items():
            self.ord[value] = key

        self.range = len(self.characters)
        return self

    def increment(self, start, amount):
        rng = (1, self.range)
        remainder = amount % rng[1]
        amount = remainder

        # Number is equally divisible and we can use the starting number
        if amount >= rng[1] and remainder == 0:
            return start

        # Amount is more than the range and there is a remainder.
        if amount >= rng[1] and remainder > 0:
            return start + remainder

        increase = start + amount
        if increase <= rng[1]:
            return increase

        if increase > rng[1]:
            return increase % rng[1]

    def decrement(self, start, amount):
        rng = (1, self.range)
        remainder = amount % rng[1]
        amount = remainder

        if amount >= rng[1] and remainder == 0:
            return start

        if amount >= rng[1] and remainder > 0:
            return rng[1] - ((amount - start) % rng[1])

        if amount < rng[1] and start - amount < rng[0]:
            return rng[1] - (amount - start)

        if amount < rng[1] and start - amount >= rng[0]:
            return start - amount

    def encrypt(self, string):
        if not string:
            # raise ValueError("String cannot be empty.")
            return string

        first_letter_ord = self.ord[string[0]]
        output = ""

        mix = 0
        for i, c in enumerate(string):
            increase = sum([self.ord[x] for x in string[:i][self.mix:]])
            c_ord = self.increment(self.ord[c], increase + mix)
            mix += increase
            if i == 0:
                out = c
            else:
                _ = self.increment(first_letter_ord, c_ord)
                out = self.rev_ord[_]

            output += out
            first_letter_ord = self.ord[c]

        first_letter_number = self.increment(
            self.ord[string[0]], sum([self.ord[x] for x in output[self.mix:]]))

        output = self.rev_ord[first_letter_number] + output[1:]
        return output

    def decrypt(self, string):
        if not string:
            # raise ValueError("String cannot be empty.")
            return string

        first_letter_ord = self.ord[string[0]]
        if not first_letter_ord:
            raise ValueError("Your message is invalid.")

        output = ""

        # Set string's first letter to the correct un-encoded letter.
        first_letter_number = self.decrement(
            first_letter_ord, sum([self.ord[x] for x in string[self.mix:]]))
        first_letter = self.rev_ord[first_letter_number]
        string = first_letter + string[1:]

        mix = 0
        for i, c in enumerate(string):
            increase = sum([self.ord[x] for x in output[:i][self.mix:]])
            c_ord = self.decrement(self.ord[c], increase + mix)
            mix += increase

            if i == 0:
                out = c
            else:
                last_c_ord = self.ord[output[-1]]
                out_ord = self.decrement(c_ord, last_c_ord)
                out = self.rev_ord[out_ord]

            output += out
            first_letter_ord = self.ord[out]

        return output