def run(self): """ Runs ER at all thresholds :return predicted_labels: List of lists of predicted labels. predicted_labels[threshold_index] = dict [identifier, cluster label] :return metrics: List of lists of metric objects. metrics[threshold_index] = Metrics object :return er_objects: List of EntityResolution objects. er_objects[threshold_index] = EntityResolution :return new_metrics_objects: List of NewMetrics objects. new_metrics_objects[threshold_index] = NewMetrics """ er = EntityResolution() #weak_match_function = LogisticMatchFunction(self._database_train, self._labels_train, self._train_pair_seed, 0.5) weak_match_function = ForestMatchFunction(self._database_train, self._labels_train, self._train_pair_seed, 0.5) print 'Testing pairwise match function on test database' ROC = weak_match_function.test(self._database_validation, self._labels_validation, self._validation_seed) #ROC.make_plot() metrics_list = list() labels_list = list() new_metrics_list = list() class_balance_test = count_pairwise_class_balance(self._labels_test) blocks = BlockingScheme(self._database_test, single_block=True) for threshold in self.thresholds: print 'Running entity resolution at threshold =', threshold weak_match_function.set_decision_threshold(threshold) labels_pred = weak_connected_components(self._database_test, weak_match_function, blocks) #labels_pred = er.run(self._database_test, weak_match_function, single_block=True, max_block_size=np.Inf, # cores=1) metrics_list.append(Metrics(self._labels_test, labels_pred)) new_metrics_list.append(NewMetrics(self._database_test, labels_pred, weak_match_function, class_balance_test)) labels_list.append(labels_pred) return labels_list, metrics_list, new_metrics_list
def main(): """ Runs a single entity resolution on data (real or synthetic) using a match function (logistic regression, decision tree, or random forest) """ data_type = 'real' decision_threshold = 0.7 train_class_balance = 0.5 max_block_size = 1000 cores = 2 if data_type == 'synthetic': database_train = SyntheticDatabase(100, 10, 10) corruption = 0.1 corruption_array = corruption*np.random.normal(loc=0.0, scale=1.0, size=[1000, database_train.database.feature_descriptor.number]) database_train.corrupt(corruption_array) database_validation = SyntheticDatabase(100, 10, 10) corruption_array = corruption*np.random.normal(loc=0.0, scale=1.0, size=[1000, database_validation.database.feature_descriptor.number]) database_validation.corrupt(corruption_array) database_test = SyntheticDatabase(10, 10, 10) corruption_array = corruption*np.random.normal(loc=0.0, scale=1.0, size=[1000, database_test.database.feature_descriptor.number]) database_test.corrupt(corruption_array) labels_train = database_train.labels labels_validation = database_validation.labels labels_test = database_test.labels database_train = database_train.database database_validation = database_validation.database database_test = database_test.database single_block = True elif data_type == 'real': # Uncomment to use all features (annotations and LM) #database_train = Database('../data/trafficking/cluster_subsample0_10000.csv', header_path='../data/trafficking/cluster_subsample_header_all.csv') #database_validation = Database('../data/trafficking/cluster_subsample1_10000.csv', header_path='../data/trafficking/cluster_subsample_header_all.csv') #database_test = Database('../data/trafficking/cluster_subsample2_10000.csv', header_path='../data/trafficking/cluster_subsample_header_all.csv') # Uncomment to only use annotation features #database_train = Database('../data/trafficking/cluster_subsample0_10000.csv', header_path='../data/trafficking/cluster_subsample_header_annotations.csv') #database_validation = Database('../data/trafficking/cluster_subsample1_10000.csv', header_path='../data/trafficking/cluster_subsample_header_annotations.csv') #database_test = Database('../data/trafficking/cluster_subsample2_10000.csv', header_path='../data/trafficking/cluster_subsample_header_annotations.csv') # Uncomment to only use LM features database_train = Database('../data/trafficking/cluster_subsample0_10000.csv', header_path='../data/trafficking/cluster_subsample_header_LM.csv') database_validation = Database('../data/trafficking/cluster_subsample1_10000.csv', header_path='../data/trafficking/cluster_subsample_header_LM.csv') database_test = Database('../data/trafficking/cluster_subsample2_10000.csv', header_path='../data/trafficking/cluster_subsample_header_LM.csv') labels_train = fast_strong_cluster(database_train) labels_validation = fast_strong_cluster(database_validation) labels_test = fast_strong_cluster(database_test) single_block = False else: Exception('Invalid experiment type'+data_type) entities = deepcopy(database_test) blocking_scheme = BlockingScheme(entities, max_block_size, single_block=single_block) train_seed = generate_pair_seed(database_train, labels_train, train_class_balance, require_direct_match=True, max_minor_class=5000) validation_seed = generate_pair_seed(database_validation, labels_validation, 0.5, require_direct_match=True, max_minor_class=5000) # forest_all = ForestMatchFunction(database_all_train, labels_train, train_seed, decision_threshold) # forest_all.test(database_all_validation, labels_validation, validation_seed) # tree_all = TreeMatchFunction(database_all_train, labels_train, train_seed, decision_threshold) # tree_all.test(database_all_validation, labels_validation, validation_seed) # logistic_all = LogisticMatchFunction(database_all_train, labels_train, train_seed, decision_threshold) # logistic_all.test(database_all_validation, labels_validation, validation_seed) forest_annotations = ForestMatchFunction(database_train, labels_train, train_seed, decision_threshold) roc = forest_annotations.test(database_validation, labels_validation, validation_seed) #roc.make_plot() #plt.show() # tree_annotations = TreeMatchFunction(database_annotations_train, labels_train, train_seed, decision_threshold) # tree_annotations.test(database_annotations_validation, labels_validation, validation_seed) # logistic_annotations = LogisticMatchFunction(database_annotations_train, labels_train, train_seed, decision_threshold) # logistic_annotations.test(database_annotations_validation, labels_validation, validation_seed) # forest_LM = ForestMatchFunction(database_LM_train, labels_train, train_seed, decision_threshold) # forest_LM.test(database_LM_validation, labels_validation, validation_seed) # tree_LM = TreeMatchFunction(database_LM_train, labels_train, train_seed, decision_threshold) # tree_LM.test(database_LM_validation, labels_validation, validation_seed) # logistic_LM = LogisticMatchFunction(database_LM_train, labels_train, train_seed, decision_threshold) # logistic_LM.test(database_LM_validation, labels_validation, validation_seed) # forest_all.roc.write_rates('match_forest_all.csv') # tree_all.roc.write_rates('match_tree_all.csv') # logistic_all.roc.write_rates('match_logistic_all.csv') # # forest_annotations.roc.write_rates('match_forest_annotations.csv') # tree_annotations.roc.write_rates('match_tree_annotations.csv') # logistic_annotations.roc.write_rates('match_logistic_annotations.csv') # # forest_LM.roc.write_rates('match_forest_LM.csv') # tree_LM.roc.write_rates('match_tree_LM.csv') # logistic_LM.roc.write_rates('match_logistic_LM.csv') # ax = forest_all.roc.make_plot() # _ = tree_all.roc.make_plot(ax=ax) # _ = logistic_all.roc.make_plot(ax=ax) # plt.show() #forest_annotations.roc.make_plot() #plt.show() #entities.merge(strong_labels) #er = EntityResolution() #weak_labels = er.run(entities, match_function, blocking_scheme, cores=cores) weak_labels = weak_connected_components(database_test, forest_annotations, blocking_scheme) entities.merge(weak_labels) #strong_labels = fast_strong_cluster(entities) #entities.merge(strong_labels) # out = open('ER.csv', 'w') # out.write('phone,cluster_id\n') # for cluster_counter, (entity_id, entity) in enumerate(entities.records.iteritems()): # phone_index = 21 # for phone in entity.features[phone_index]: # out.write(str(phone)+','+str(cluster_counter)+'\n') # out.close() print 'Metrics using strong features as surrogate label. Entity resolution run using weak and strong features' metrics = Metrics(labels_test, weak_labels) # estimated_test_class_balance = count_pairwise_class_balance(labels_test) # new_metrics = NewMetrics(database_all_test, weak_labels, forest_all, estimated_test_class_balance) metrics.display()