def get_random_object() -> str: return randomname.get_name(sep=' ')
def default_unique_experiment_name(cls, v, values): # noqa: D102, N805 return v or values["experiment_name"] + "_" + randomname.get_name()
def test_get_name(): name = randomname.get_name('music_theory', 'cats').split('-', 1) assert len(name) > 1 assert name[0] in randomname.util.get_groups_list('a/music_theory') assert name[1] in randomname.util.get_groups_list('n/cats') assert 'asdf' in randomname.util.get_groups_list(['n/cats', 'asdf'])
options = [line.rstrip() for line in f] else: options = [env_option] return [_get_env_variable(option) for option in options] def _parse_env_options(env_options): return dict( [j for i in [_get_env_variables(k) for k in env_options] for j in i]) @cli.command(help="Stages and starts a Mendix application.") @click.option( "-n", "--name", default=randomname.get_name(), help="Sets the name of the application.", ) @click.option( "-p", "--password", help="Sets the adminstrator password for the application.", ) @click.option( "-e", "--env", multiple=True, help= "Sets an environment variable (KEY=VALUE) for the application. Providing a file with environment variables and multiple options are allowed.", ) @click.option(
from config import config from loader import GenreDataLoader from networks import GenreAutoencoder, GenreDecoder bert_config_name = "prajjwal1/bert-mini" BATCH_SIZE = 64 bert_config = BertConfig.from_pretrained(bert_config_name) PATH = f"genre_autoencoder-{bert_config.hidden_size}" lp_path = os.path.join(config.get("learning_progress_path"), PATH) TRAIN_STEPS = int(1e5) if __name__ == "__main__": run_name = randomname.get_name() model_dump_path = os.path.join(lp_path, "model", run_name) Path(model_dump_path).mkdir(parents=True, exist_ok=True) data_loader = GenreDataLoader( batch_size=BATCH_SIZE, meta_data_path="data/album_data_frame.json", tokenizer_path=bert_config_name, ) num_labels = data_loader.get_number_of_classes() vocab_size = len(data_loader.tokenizer.get_vocab()) encoder = BertForMaskedLM.from_pretrained(bert_config_name) encoder.bert = BertModel.from_pretrained(bert_config_name, add_pooling_layer=True) decoder = GenreDecoder(input_dim=bert_config.hidden_size,