Esempio n. 1
0
    EQUADidx[tag] = []
    EQUAD = float(md.__dict__['T2EQUAD ' + tag])
    EQUADlist.append(EQUAD)
for i, toa in enumerate(tf.toalist):
    SIGMA.append(float(toa.TOAsigma))
    TOAflags = [('-%s %s' % (f,toa.flags[f])) for f in toa.flags]
    try:
        key = (set(EFACtags) & set(TOAflags)).pop()
        EFACidx[key].append(i)
    except:
        EFAC = EFAC_default
    key = (set(EQUADtags) & set(TOAflags)).pop()
    EQUADidx[key].append(i)

"""Setup red noise Fourier matrix, Fr"""
f, F = get_rr_rep(toas, Tspan, 1./Tspan/4.7, 50, 20)
#fyr = 1./secperyear


p0 = [float(md.__dict__[p]) for p in T2EFAC]
p1 = [np.log(float(md.__dict__[p])) for p in T2EQUAD]
p2 = [np.log(float(md.__dict__[p])) for p in T2ECORR]
p3 = [np.log(RNAMP), RNIDX]
np0 = len(p0)
np1 = np0 + len(p1)
np2 = np1 + len(p2)
np3 = np2 + len(p3)
plist = np.array(p0 + p1 + p2 + p3)


def loglikelihood(plist, logspace=True):
Esempio n. 2
0
for tag in EQUADtags:
    EQUADidx[tag] = []
    EQUAD = float(md.__dict__['T2EQUAD ' + tag])
    EQUADlist.append(EQUAD)
for i, toa in enumerate(tf.toalist):
    SIGMA.append(float(toa.TOAsigma))
    TOAflags = [('-%s %s' % (f, toa.flags[f])) for f in toa.flags]
    try:
        key = (set(EFACtags) & set(TOAflags)).pop()
        EFACidx[key].append(i)
    except:
        EFAC = EFAC_default
    key = (set(EQUADtags) & set(TOAflags)).pop()
    EQUADidx[key].append(i)
"""Setup red noise Fourier matrix, Fr"""
f, F = get_rr_rep(toas, Tspan, 1. / Tspan / 4.7, 50, 20)
#fyr = 1./secperyear

p0 = [float(md.__dict__[p]) for p in T2EFAC]
p1 = [np.log(float(md.__dict__[p])) for p in T2EQUAD]
p2 = [np.log(float(md.__dict__[p])) for p in T2ECORR]
p3 = [np.log(RNAMP), RNIDX]
np0 = len(p0)
np1 = np0 + len(p1)
np2 = np1 + len(p2)
np3 = np2 + len(p3)
plist = np.array(p0 + p1 + p2 + p3)


def loglikelihood(plist, logspace=True):
    tstart = time.time()
Esempio n. 3
0
def getRNreal(md, tf, t, w, M, r, n):

    T2EFAC = [par for par in md.__dict__ if par.startswith('T2EFAC')]
    T2EQUAD = [par for par in md.__dict__ if par.startswith('T2EQUAD')]
    T2ECORR = [par for par in md.__dict__ if par.startswith('ECORR')]

    if 'RNAMP' in md.__dict__:
        RNAMP = np.abs(float(md.RNAMP))
    else:
        RNAMP = np.abs(0.06)
        md.manifest.append('RNAMP')
    if 'RNIDX' in md.__dict__:
        RNIDX = float(md.RNIDX)
    else:
        RNIDX = -2.17
        md.manifest.append('RNIDX')

    #groups = {}
    #flaglist = []
    #for par in T2EQUAD:
        #flag = ' '.join(par.split()[1:3])
        #groups[flag] = tf.othergroups[flag]
        #flaglist.append(flag)


    """ Setup matrix U and epoch-avearging matrix EA"""
    ECORRtags = [' '.join(tag.split()[1:3]) for tag in T2ECORR]
    S_idx = []
    stack = []
    aveeph = []
    ECORRlist = []
    for key in T2ECORR:
        flag = ' '.join(key.split()[1:3])
        if key  in md.__dict__:
            ECORRlist.append(float(md.__dict__[key]))
            S_idx.append(0)
            for epochs in sorted(md.toagrps[flag].keys()):
                aveeph.append(epochs)
                idx = md.toagrps[flag][epochs]
                S_idx[-1] += 1
                l = np.zeros(n)
                l[idx] = 1.
                stack.append(l)
            S_idx[-1] = np.array(S_idx[-1])
    S_ele = np.hstack([ ECORRlist[i]**2 *np.ones(k) for i,k in enumerate(S_idx)])
    U = (np.vstack(stack)).T
    UT = U.T

    """ Setup EFAC, EQUAD"""
    EFACtags = [' '.join(tag.split()[1:3]) for tag in T2EFAC]
    EQUADtags = [' '.join(tag.split()[1:3]) for tag in T2EQUAD]
    EFACidx = {}
    EQUADidx = {}
    SIGMA = []
    EFAClist = []
    EQUADlist = []
    for tag in EFACtags:
        EFACidx[tag] = []
        EFAC = float(md.__dict__['T2EFAC ' + tag])
        EFAClist.append(EFAC)
    for tag in EQUADtags:
        EQUADidx[tag] = []
        EQUAD = float(md.__dict__['T2EQUAD ' + tag])
        EQUADlist.append(EQUAD)
    for i, toa in enumerate(tf.toalist):
        SIGMA.append(float(toa.TOAsigma))
        TOAflags = [('-%s %s' % (f,toa.flags[f])) for f in toa.flags]
        try:
            key = (set(EFACtags) & set(TOAflags)).pop()
            EFACidx[key].append(i)
        except:
            EFAC = EFAC_default
        key = (set(EQUADtags) & set(TOAflags)).pop()
        EQUADidx[key].append(i)

    """Setup red noise Fourier matrix, Fr"""
    freq , F = get_rr_rep(toas, Tspan, 1./Tspan/4.7, 50, 20)

    p0 = [float(md.__dict__[p]) for p in T2EFAC]
    p1 = [np.log(float(md.__dict__[p])) for p in T2EQUAD]
    p2 = [np.log(float(md.__dict__[p])) for p in T2ECORR]
    p3 = [np.log(RNAMP), RNIDX]
    np0 = len(p0)
    np1 = np0 + len(p1)
    np2 = np1 + len(p2)
    np3 = np2 + len(p3)
    plist = np.array(p0 + p1 + p2 + p3)


    #def plotRN(plist, logspace=True):
    tstart = time.time()
    """setup parameters"""
    p0 = np.array(plist[:np0])
    p1 = np.array(plist[np0:np1])
    p2 = np.array(plist[np1:np2])
    p3 = np.array(plist[np2:np3])
    if logspace:
        CoordTransTerm =  (np.sum(p1) + np.sum(p2) + p3[0]) #sume all the logterm for coordinate transformation dz = z d (ln(z))
        p1 = np.exp(p1)
        p2 = np.exp(p2)
        p3[0] = np.exp(p3[0])
    else:
        CoordTransTerm = 0.
    """Load parameters"""
    efac = np.ones(n) 
    for i,tag in enumerate(EFACtags):
        efac[EFACidx[tag]] = p0[i]
    Nvec = np.array(SIGMA * efac)**2
    equad = np.zeros(n)
    for i,tag in enumerate(EQUADtags):
        equad[EQUADidx[tag]] = p1[i]
    Nvec += (equad**2)
    S_ele = np.hstack([ p2[i]**2. *np.ones(k) for i,k in enumerate(S_idx)])
    RNAMP = np.abs(p3[0]) #/ ampfac
    RNIDX = p3[1]
    #phi = (RNAMP**2)/12/np.pi/np.pi *fyr**(-3-RNIDX) * f**RNIDX
    phi = (RNAMP**2) * freq ** RNIDX #assuming f is is 1/yr units.

    """Putting the noise models together"""
    T = np.hstack((M, F, U))

    """Putting the timing and noise parameters together """
    m = M.shape[1]
    n_f = F.shape[1]
    n_j = U.shape[1]
    n_p = T.shape[1]
    Phi_I = np.zeros((n_p, n_p))
    Pars =  [LARGE_NUMBER for i in range(m)]
    Pars += list(phi)
    Pars += list(S_ele)
    Pi = 1./np.array(Pars)
    np.fill_diagonal(Phi_I, Pi)

    """compute likelyhood"""
    d = dot(T.T, r/Nvec)
    Sigma = Phi_I + dot(T.T, (1./Nvec * T.T).T)
    #print d.shape, Sigma.shape
    try:
        cfSigma = sl.cho_factor(Sigma)
    #except LinAlgError:
    except :
        print Sigma

    logdetSigma = 2.*np.sum(np.log(np.diag(cfSigma[0])))
    Sid = sl.cho_solve(cfSigma, d)
    dSid = np.dot(d.T, Sid)

    logdetCt = np.sum(np.log(np.array(Pars[m:])))
    logdetN = np.sum(np.log(Nvec))

    Nir = r / Nvec

    LogLike1 = 0.5 * ( dot(r.T, Nir) - dSid)
    LogLike2 = 0.5 * ( logdetN + logdetSigma + logdetCt)
    LogLike = LogLike1 + LogLike2 - CoordTransTerm

    b = sl.cho_solve(cfSigma, d.T)
    bphi = b[m:m+n_f]

    phi_I = np.zeros((n_f, n_f))
    np.fill_diagonal(phi_I, 1./phi)
    FT = F.T
    sigma = phi_I #+ dot(FT, (1./Nvec * FT).T)
    cfsigma = sl.cho_factor(sigma)

    y = dot(F, bphi.T)
    yerr = np.sqrt(np.diag(dot(F, sl.cho_solve(cfsigma, FT))))

    return y, yerr
Esempio n. 4
0
def getRNreal(md, tf, t, w, M, r, n):

    T2EFAC = [par for par in md.__dict__ if par.startswith('T2EFAC')]
    T2EQUAD = [par for par in md.__dict__ if par.startswith('T2EQUAD')]
    T2ECORR = [par for par in md.__dict__ if par.startswith('ECORR')]

    if 'RNAMP' in md.__dict__:
        RNAMP = np.abs(float(md.RNAMP))
    else:
        RNAMP = np.abs(0.06)
        md.manifest.append('RNAMP')
    if 'RNIDX' in md.__dict__:
        RNIDX = float(md.RNIDX)
    else:
        RNIDX = -2.17
        md.manifest.append('RNIDX')

    #groups = {}
    #flaglist = []
    #for par in T2EQUAD:
    #flag = ' '.join(par.split()[1:3])
    #groups[flag] = tf.othergroups[flag]
    #flaglist.append(flag)
    """ Setup matrix U and epoch-avearging matrix EA"""
    ECORRtags = [' '.join(tag.split()[1:3]) for tag in T2ECORR]
    S_idx = []
    stack = []
    aveeph = []
    ECORRlist = []
    for key in T2ECORR:
        flag = ' '.join(key.split()[1:3])
        if key in md.__dict__:
            ECORRlist.append(float(md.__dict__[key]))
            S_idx.append(0)
            for epochs in sorted(md.toagrps[flag].keys()):
                aveeph.append(epochs)
                idx = md.toagrps[flag][epochs]
                S_idx[-1] += 1
                l = np.zeros(n)
                l[idx] = 1.
                stack.append(l)
            S_idx[-1] = np.array(S_idx[-1])
    S_ele = np.hstack(
        [ECORRlist[i]**2 * np.ones(k) for i, k in enumerate(S_idx)])
    U = (np.vstack(stack)).T
    UT = U.T
    """ Setup EFAC, EQUAD"""
    EFACtags = [' '.join(tag.split()[1:3]) for tag in T2EFAC]
    EQUADtags = [' '.join(tag.split()[1:3]) for tag in T2EQUAD]
    EFACidx = {}
    EQUADidx = {}
    SIGMA = []
    EFAClist = []
    EQUADlist = []
    for tag in EFACtags:
        EFACidx[tag] = []
        EFAC = float(md.__dict__['T2EFAC ' + tag])
        EFAClist.append(EFAC)
    for tag in EQUADtags:
        EQUADidx[tag] = []
        EQUAD = float(md.__dict__['T2EQUAD ' + tag])
        EQUADlist.append(EQUAD)
    for i, toa in enumerate(tf.toalist):
        SIGMA.append(float(toa.TOAsigma))
        TOAflags = [('-%s %s' % (f, toa.flags[f])) for f in toa.flags]
        try:
            key = (set(EFACtags) & set(TOAflags)).pop()
            EFACidx[key].append(i)
        except:
            EFAC = EFAC_default
        key = (set(EQUADtags) & set(TOAflags)).pop()
        EQUADidx[key].append(i)
    """Setup red noise Fourier matrix, Fr"""
    freq, F = get_rr_rep(toas, Tspan, 1. / Tspan / 4.7, 50, 20)

    p0 = [float(md.__dict__[p]) for p in T2EFAC]
    p1 = [np.log(float(md.__dict__[p])) for p in T2EQUAD]
    p2 = [np.log(float(md.__dict__[p])) for p in T2ECORR]
    p3 = [np.log(RNAMP), RNIDX]
    np0 = len(p0)
    np1 = np0 + len(p1)
    np2 = np1 + len(p2)
    np3 = np2 + len(p3)
    plist = np.array(p0 + p1 + p2 + p3)

    #def plotRN(plist, logspace=True):
    tstart = time.time()
    """setup parameters"""
    p0 = np.array(plist[:np0])
    p1 = np.array(plist[np0:np1])
    p2 = np.array(plist[np1:np2])
    p3 = np.array(plist[np2:np3])
    if logspace:
        CoordTransTerm = (
            np.sum(p1) + np.sum(p2) + p3[0]
        )  #sume all the logterm for coordinate transformation dz = z d (ln(z))
        p1 = np.exp(p1)
        p2 = np.exp(p2)
        p3[0] = np.exp(p3[0])
    else:
        CoordTransTerm = 0.
    """Load parameters"""
    efac = np.ones(n)
    for i, tag in enumerate(EFACtags):
        efac[EFACidx[tag]] = p0[i]
    Nvec = np.array(SIGMA * efac)**2
    equad = np.zeros(n)
    for i, tag in enumerate(EQUADtags):
        equad[EQUADidx[tag]] = p1[i]
    Nvec += (equad**2)
    S_ele = np.hstack([p2[i]**2. * np.ones(k) for i, k in enumerate(S_idx)])
    RNAMP = np.abs(p3[0])  #/ ampfac
    RNIDX = p3[1]
    #phi = (RNAMP**2)/12/np.pi/np.pi *fyr**(-3-RNIDX) * f**RNIDX
    phi = (RNAMP**2) * freq**RNIDX  #assuming f is is 1/yr units.
    """Putting the noise models together"""
    T = np.hstack((M, F, U))
    """Putting the timing and noise parameters together """
    m = M.shape[1]
    n_f = F.shape[1]
    n_j = U.shape[1]
    n_p = T.shape[1]
    Phi_I = np.zeros((n_p, n_p))
    Pars = [LARGE_NUMBER for i in range(m)]
    Pars += list(phi)
    Pars += list(S_ele)
    Pi = 1. / np.array(Pars)
    np.fill_diagonal(Phi_I, Pi)
    """compute likelyhood"""
    d = dot(T.T, r / Nvec)
    Sigma = Phi_I + dot(T.T, (1. / Nvec * T.T).T)
    #print d.shape, Sigma.shape
    try:
        cfSigma = sl.cho_factor(Sigma)
    #except LinAlgError:
    except:
        print Sigma

    logdetSigma = 2. * np.sum(np.log(np.diag(cfSigma[0])))
    Sid = sl.cho_solve(cfSigma, d)
    dSid = np.dot(d.T, Sid)

    logdetCt = np.sum(np.log(np.array(Pars[m:])))
    logdetN = np.sum(np.log(Nvec))

    Nir = r / Nvec

    LogLike1 = 0.5 * (dot(r.T, Nir) - dSid)
    LogLike2 = 0.5 * (logdetN + logdetSigma + logdetCt)
    LogLike = LogLike1 + LogLike2 - CoordTransTerm

    b = sl.cho_solve(cfSigma, d.T)
    bphi = b[m:m + n_f]

    phi_I = np.zeros((n_f, n_f))
    np.fill_diagonal(phi_I, 1. / phi)
    FT = F.T
    sigma = phi_I  #+ dot(FT, (1./Nvec * FT).T)
    cfsigma = sl.cho_factor(sigma)

    y = dot(F, bphi.T)
    yerr = np.sqrt(np.diag(dot(F, sl.cho_solve(cfsigma, FT))))

    return y, yerr