Esempio n. 1
0
def niftidecomp_workflow(
    decompaxis,
    datafile,
    outputroot,
    datamaskname=None,
    decomptype="pca",
    pcacomponents=0.5,
    icacomponents=None,
    varnorm=True,
    demean=True,
    sigma=0.0,
):

    print(f"Will perform {decomptype} analysis along the {decompaxis} axis")

    if decompaxis == "temporal":
        decompaxisnum = 1
        transposeifspatial = lambda *a, **k: None
    else:
        decompaxisnum = 0
        transposeifspatial = np.transpose

    # save the command line
    tide_io.writevec([" ".join(sys.argv)], outputroot + "_commandline.txt")

    # read in data
    print("reading in data arrays")
    (
        datafile_img,
        datafile_data,
        datafile_hdr,
        datafiledims,
        datafilesizes,
    ) = tide_io.readfromnifti(datafile)

    if datamaskname is not None:
        (
            datamask_img,
            datamask_data,
            datamask_hdr,
            datamaskdims,
            datamasksizes,
        ) = tide_io.readfromnifti(datamaskname)

    xsize, ysize, numslices, timepoints = tide_io.parseniftidims(datafiledims)
    xdim, ydim, slicethickness, tr = tide_io.parseniftisizes(datafilesizes)

    # check dimensions
    if datamaskname is not None:
        print("checking mask dimensions")
        if not tide_io.checkspacedimmatch(datafiledims, datamaskdims):
            print("input mask spatial dimensions do not match image")
            exit()
        if not (tide_io.checktimematch(datafiledims, datamaskdims)
                or datamaskdims[4] == 1):
            print("input mask time dimension does not match image")
            exit()

    # save the command line
    tide_io.writevec([" ".join(sys.argv)], outputroot + "_commandline.txt")

    # smooth the data
    if sigma > 0.0:
        print("smoothing data")
        for i in range(timepoints):
            datafile_data[:, :, :,
                          i] = tide_filt.ssmooth(xdim, ydim, slicethickness,
                                                 sigma, datafile_data[:, :, :,
                                                                      i])

    # allocating arrays
    print("reshaping arrays")
    numspatiallocs = int(xsize) * int(ysize) * int(numslices)
    rs_datafile = datafile_data.reshape((numspatiallocs, timepoints))

    print("masking arrays")
    if datamaskname is not None:
        if datamaskdims[4] == 1:
            proclocs = np.where(datamask_data.reshape(numspatiallocs) > 0.5)
        else:
            proclocs = np.where(
                np.mean(datamask_data.reshape((numspatiallocs, timepoints)),
                        axis=1) > 0.5)
            rs_mask = datamask_data.reshape(
                (numspatiallocs, timepoints))[proclocs, :]
            rs_mask = np.where(rs_mask > 0.5, 1.0, 0.0)[0]
    else:
        datamaskdims = [1, xsize, ysize, numslices, 1]
        themaxes = np.max(rs_datafile, axis=1)
        themins = np.min(rs_datafile, axis=1)
        thediffs = (themaxes - themins).reshape(numspatiallocs)
        proclocs = np.where(thediffs > 0.0)
    procdata = rs_datafile[proclocs, :][0]
    print(rs_datafile.shape, procdata.shape)

    # normalize the individual images
    if demean:
        print("demeaning array")
        themean = np.mean(procdata, axis=decompaxisnum)
        print("shape of mean", themean.shape)
        for i in range(procdata.shape[1 - decompaxisnum]):
            if decompaxisnum == 1:
                procdata[i, :] -= themean[i]
            else:
                procdata[:, i] -= themean[i]
    else:
        themean = np.ones(procdata.shape[1 - decompaxisnum])

    if varnorm:
        print("variance normalizing array")
        thevar = np.var(procdata, axis=decompaxisnum)
        print("shape of var", thevar.shape)
        for i in range(procdata.shape[1 - decompaxisnum]):
            if decompaxisnum == 1:
                procdata[i, :] /= thevar[i]
            else:
                procdata[:, i] /= thevar[i]
        procdata = np.nan_to_num(procdata)
    else:
        thevar = np.ones(procdata.shape[1 - decompaxisnum])

    # applying mask
    if datamaskdims[4] > 1:
        procdata *= rs_mask

    # now perform the decomposition
    if decomptype == "ica":
        print("performing ica decomposition")
        if icacomponents is None:
            print("will return all significant components")
        else:
            print("will return", icacomponents, "components")
        thefit = FastICA(n_components=icacomponents).fit(
            transposeifspatial(procdata))  # Reconstruct signals
        if icacomponents is None:
            thecomponents = transposeifspatial(thefit.components_[:])
            print(thecomponents.shape[1], "components found")
        else:
            thecomponents = transposeifspatial(
                thefit.components_[0:icacomponents])
            print("returning first", thecomponents.shape[1],
                  "components found")
    else:
        print("performing pca decomposition")
        if pcacomponents < 1.0:
            print(
                "will return the components accounting for",
                pcacomponents * 100.0,
                "% of the variance",
            )
        else:
            print("will return", pcacomponents, "components")
        if decomptype == "pca":
            thepca = PCA(n_components=pcacomponents)
        else:
            thepca = SparsePCA(n_components=pcacomponents)
        thefit = thepca.fit(transposeifspatial(procdata))
        thetransform = thepca.transform(transposeifspatial(procdata))
        theinvtrans = transposeifspatial(
            thepca.inverse_transform(thetransform))
        if pcacomponents < 1.0:
            thecomponents = transposeifspatial(thefit.components_[:])
            print("returning", thecomponents.shape[1], "components")
        else:
            thecomponents = transposeifspatial(
                thefit.components_[0:pcacomponents])

        # save the eigenvalues
        print("variance explained by component:",
              100.0 * thefit.explained_variance_ratio_)
        tide_io.writenpvecs(
            100.0 * thefit.explained_variance_ratio_,
            outputroot + "_explained_variance_pct.txt",
        )

        if decompaxis == "temporal":
            # save the components
            print("writing component timecourses")
            tide_io.writenpvecs(thecomponents, outputroot + "_components.txt")

            # save the singular values
            print("writing singular values")
            tide_io.writenpvecs(np.transpose(thesingvals),
                                outputroot + "_singvals.txt")

            # save the coefficients
            print("writing out the coefficients")
            coefficients = thetransform
            print("coefficients shape:", coefficients.shape)
            theheader = datafile_hdr
            theheader["dim"][4] = coefficients.shape[1]
            tempout = np.zeros((numspatiallocs, coefficients.shape[1]),
                               dtype="float")
            tempout[proclocs, :] = coefficients[:, :]
            tide_io.savetonifti(
                tempout.reshape(
                    (xsize, ysize, numslices, coefficients.shape[1])),
                datafile_hdr,
                outputroot + "_coefficients",
            )
            # unnormalize the dimensionality reduced data
            for i in range(numspatiallocs):
                theinvtrans[i, :] = thevar[i] * theinvtrans[i, :] + themean[i]

        else:
            # save the component images
            print("writing component images")
            theheader = datafile_hdr
            theheader["dim"][4] = thecomponents.shape[1]
            tempout = np.zeros((numspatiallocs, thecomponents.shape[1]),
                               dtype="float")
            tempout[proclocs, :] = thecomponents[:, :]
            tide_io.savetonifti(
                tempout.reshape(
                    (xsize, ysize, numslices, thecomponents.shape[1])),
                datafile_hdr,
                outputroot + "_components",
            )

            # save the coefficients
            print("writing out the coefficients")
            coefficients = np.transpose(thetransform)
            tide_io.writenpvecs(coefficients, outputroot + "_coefficients.txt")

            # unnormalize the dimensionality reduced data
            for i in range(timepoints):
                theinvtrans[:, i] = thevar[i] * theinvtrans[:, i] + themean[i]

        print("writing fit data")
        theheader = datafile_hdr
        theheader["dim"][4] = theinvtrans.shape[1]
        tempout = np.zeros((numspatiallocs, theinvtrans.shape[1]),
                           dtype="float")
        tempout[proclocs, :] = theinvtrans[:, :]
        tide_io.savetonifti(
            tempout.reshape((xsize, ysize, numslices, theinvtrans.shape[1])),
            datafile_hdr,
            outputroot + "_fit",
        )
Esempio n. 2
0
def glmfilt(inputfile, numskip, outputroot, evfilename):

    # initialize some variables
    evdata = []
    evisnifti = []
    thedims_in = []
    thedims_ev = []
    thesizes_ev = []

    # read the datafile and the evfiles
    nim_input, nim_data, nim_header, thedims_in, thesizes_in = tide_io.readfromnifti(inputfile)
    xdim, ydim, slicedim, tr = tide_io.parseniftisizes(thesizes_in)
    print(xdim, ydim, slicedim, tr)
    xsize, ysize, numslices, timepoints = tide_io.parseniftidims(thedims_in)
    print(xsize, ysize, numslices, timepoints)

    numregressors = 0
    for i in range(0, len(evfilename)):
        print("file ", i, " has name ", evfilename[i])
        # check to see if file is nifti or text
        fileisnifti = tide_io.checkifnifti(evfilename[i])
        fileisparfile = tide_io.checkifparfile(evfilename[i])
        if fileisnifti:
            # if file is nifti
            print("reading voxel specific regressor from ", evfilename[i])
            (
                nim_evinput,
                ev_data,
                ev_header,
                thedims_evinput,
                thesizes_evinput,
            ) = tide_io.readfromnifti(evfilename[i])
            evisnifti.append(True)
            evdata.append(1.0 * ev_data)
            thedims_ev.append(thedims_evinput)
            thesizes_ev.append(thesizes_evinput)
            numregressors += 1
        elif fileisparfile:
            # check to see if file a par file
            print("reading 6 global regressors from an FSL parfile")
            evtimeseries = tide_io.readvecs(evfilename[i])
            print("timeseries length = ", len(evtimeseries[0, :]))
            for j in range(0, 6):
                evisnifti.append(False)
                evdata.append(1.0 * evtimeseries[j, :])
                thedims_evinput = 1.0 * thedims_in
                thesizes_evinput = 1.0 * thesizes_in
                thedims_ev.append(thedims_evinput)
                thesizes_ev.append(thesizes_evinput)
                numregressors += 1
        else:
            # if file is text
            print("reading global regressor from ", evfilename[i])
            evtimeseries = tide_io.readvec(evfilename[i])
            print("timeseries length = ", len(evtimeseries))
            evisnifti.append(False)
            evdata.append(1.0 * evtimeseries)
            thedims_evinput = 1.0 * thedims_in
            thesizes_evinput = 1.0 * thesizes_in
            thedims_ev.append(thedims_evinput)
            thesizes_ev.append(thesizes_evinput)
            numregressors += 1

    for j in range(0, numregressors):
        for i in range(0, 4):
            if thedims_in[i] != thedims_ev[j][i]:
                print("Input file and ev file ", j, " dimensions do not match")
                print("dimension ", i, ":", thedims_in[i], " != ", thedims_ev[j][i])
                exit()
        if timepoints - numskip != thedims_ev[j][4]:
            print("Input file and ev file ", j, " dimensions do not match")
            print("dimension ", 4, ":", timepoints, "!= ", thedims_ev[j][4], "+", numskip)
            exit()

    print("will perform GLM with ", numregressors, " regressors")
    meandata = np.zeros((xsize, ysize, numslices), dtype="float")
    fitdata = np.zeros((xsize, ysize, numslices, numregressors), dtype="float")
    Rdata = np.zeros((xsize, ysize, numslices), dtype="float")
    trimmeddata = 1.0 * nim_data[:, :, :, numskip:]

    for z in range(0, numslices):
        print("processing slice ", z)
        for y in range(0, ysize):
            for x in range(0, xsize):
                regressorvec = []
                for j in range(0, numregressors):
                    if evisnifti[j]:
                        regressorvec.append(evdata[j][x, y, z, :])
                    else:
                        regressorvec.append(evdata[j])
                if np.max(trimmeddata[x, y, z, :]) - np.min(trimmeddata[x, y, z, :]) > 0.0:
                    thefit, R = tide_fit.mlregress(regressorvec, trimmeddata[x, y, z, :])
                    meandata[x, y, z] = thefit[0, 0]
                    Rdata[x, y, z] = R
                    for j in range(0, numregressors):
                        fitdata[x, y, z, j] = thefit[0, j + 1]
                        # datatoremove[x, y, z, :, j] = thefit[0, j + 1] * regressorvec[j]
                else:
                    meandata[x, y, z] = 0.0
                    Rdata[x, y, z] = 0.0
                    for j in range(0, numregressors):
                        fitdata[x, y, z, j] = 0.0
                        # datatoremove[x, y, z, :, j] = 0.0 * regressorvec[j]
                # totaltoremove[x, y, z, :] = np.sum(datatoremove[x, y, z, :, :], axis=1)
                # filtereddata[x, y, z, :] = trimmeddata[x, y, z, :] - totaltoremove[x, y, z, :]

    # first save the things with a small numbers of timepoints
    print("fitting complete: about to save the fit data")
    theheader = nim_header
    theheader["dim"][4] = 1
    tide_io.savetonifti(meandata, theheader, outputroot + "_mean")
    for j in range(0, numregressors):
        tide_io.savetonifti(fitdata[:, :, :, j], theheader, outputroot + "_fit" + str(j))
    tide_io.savetonifti(Rdata, theheader, outputroot + "_R")
    Rdata = None

    print()
    print("Now constructing the array of data to remove")
    # datatoremove = np.zeros((xsize, ysize, numslices, timepoints - numskip, numregressors), dtype='float')
    totaltoremove = np.zeros((xsize, ysize, numslices, timepoints - numskip), dtype="float")
    # filtereddata = 1.0 * totaltoremove
    for z in range(0, numslices):
        print("processing slice ", z)
        for y in range(0, ysize):
            for x in range(0, xsize):
                if np.max(trimmeddata[x, y, z, :]) - np.min(trimmeddata[x, y, z, :]) > 0.0:
                    for j in range(0, numregressors):
                        totaltoremove[x, y, z, :] += fitdata[x, y, z, j] * regressorvec[j]
                else:
                    totaltoremove[x, y, z, :] = 0.0
    print("Array construction done.  Saving files")

    # now save the things with full timecourses
    theheader = nim_header
    theheader["dim"][4] = timepoints - numskip
    tide_io.savetonifti(totaltoremove, theheader, outputroot + "_totaltoremove")
    filtereddata = trimmeddata - totaltoremove
    totaltoremove = None
    tide_io.savetonifti(trimmeddata, theheader, outputroot + "_trimmed")
    trimmeddata = None
    tide_io.savetonifti(filtereddata, theheader, outputroot + "_filtered")
Esempio n. 3
0
def roisummarize(args):
    # grab the command line arguments then pass them off.
    try:
        args = _get_parser().parse_args()
    except SystemExit:
        _get_parser().print_help()
        raise

    # set the sample rate
    if args.samplerate == "auto":
        args.samplerate = 1.0
    else:
        samplerate = args.samplerate

    args, thefilter = pf.postprocessfilteropts(args, debug=args.debug)

    print("loading fmri data")
    input_img, input_data, input_hdr, thedims, thesizes = tide_io.readfromnifti(
        args.inputfilename)
    print("loading template data")
    template_img, template_data, template_hdr, templatedims, templatesizes = tide_io.readfromnifti(
        args.templatefile)

    print("checking dimensions")
    if not tide_io.checkspacematch(input_hdr, template_hdr):
        print(
            "template file does not match spatial coverage of input fmri file")
        sys.exit()

    print("reshaping")
    xsize = thedims[1]
    ysize = thedims[2]
    numslices = thedims[3]
    numtimepoints = thedims[4]
    numvoxels = int(xsize) * int(ysize) * int(numslices)
    templatevoxels = np.reshape(template_data, numvoxels).astype(int)

    if numtimepoints > 1:
        inputvoxels = np.reshape(input_data,
                                 (numvoxels, numtimepoints))[:, args.numskip:]
        print("filtering")
        for thevoxel in range(numvoxels):
            if templatevoxels[thevoxel] > 0:
                inputvoxels[thevoxel, :] = thefilter.apply(
                    args.samplerate, inputvoxels[thevoxel, :])

        print("summarizing")
        timecourses = summarize4Dbylabel(inputvoxels,
                                         templatevoxels,
                                         normmethod=args.normmethod,
                                         debug=args.debug)

        print("writing data")
        tide_io.writenpvecs(timecourses, args.outputfile + "_timecourses")
    else:
        inputvoxels = np.reshape(input_data, (numvoxels))
        numregions = np.max(templatevoxels)
        template_hdr["dim"][4] = numregions
        outputvoxels, regionstats = summarize3Dbylabel(inputvoxels,
                                                       templatevoxels,
                                                       debug=args.debug)
        tide_io.savetonifti(
            outputvoxels.reshape((xsize, ysize, numslices)),
            template_hdr,
            args.outputfile + "_meanvals",
        )
        tide_io.writenpvecs(np.array(regionstats),
                            args.outputfile + "_regionstats.txt")
Esempio n. 4
0
def polyfitim(
    datafile,
    datamask,
    templatefile,
    templatemask,
    outputroot,
    regionatlas=None,
    order=1,
):

    # read in data
    print("reading in data arrays")
    (
        datafile_img,
        datafile_data,
        datafile_hdr,
        datafiledims,
        datafilesizes,
    ) = tide_io.readfromnifti(datafile)
    (
        datamask_img,
        datamask_data,
        datamask_hdr,
        datamaskdims,
        datamasksizes,
    ) = tide_io.readfromnifti(datamask)
    (
        templatefile_img,
        templatefile_data,
        templatefile_hdr,
        templatefiledims,
        templatefilesizes,
    ) = tide_io.readfromnifti(templatefile)
    (
        templatemask_img,
        templatemask_data,
        templatemask_hdr,
        templatemaskdims,
        templatemasksizes,
    ) = tide_io.readfromnifti(templatemask)

    if regionatlas is not None:
        (
            regionatlas_img,
            regionatlas_data,
            regionatlas_hdr,
            regionatlasdims,
            regionatlassizes,
        ) = tide_io.readfromnifti(regionatlas)

    xsize = datafiledims[1]
    ysize = datafiledims[2]
    numslices = datafiledims[3]
    timepoints = datafiledims[4]

    # check dimensions
    print("checking dimensions")
    if not tide_io.checkspacedimmatch(datafiledims, datamaskdims):
        print("input mask spatial dimensions do not match image")
        exit()
    if datamaskdims[4] == 1:
        print("using 3d data mask")
        datamask3d = True
    else:
        datamask3d = False
        if not tide_io.checktimematch(datafiledims, datamaskdims):
            print("input mask time dimension does not match image")
            exit()
    if not tide_io.checkspacedimmatch(datafiledims, templatefiledims):
        print(templatefiledims,
              "template file spatial dimensions do not match image")
        exit()
    if not templatefiledims[4] == 1:
        print("template file time dimension is not equal to 1")
        exit()
    if not tide_io.checkspacedimmatch(datafiledims, templatemaskdims):
        print("template mask spatial dimensions do not match image")
        exit()
    if not templatemaskdims[4] == 1:
        print("template mask time dimension is not equal to 1")
        exit()
    if regionatlas is not None:
        if not tide_io.checkspacedimmatch(datafiledims, regionatlasdims):
            print("template mask spatial dimensions do not match image")
            exit()
        if not regionatlasdims[4] == 1:
            print("regionatlas time dimension is not equal to 1")
            exit()

    # allocating arrays
    print("allocating arrays")
    numspatiallocs = int(xsize) * int(ysize) * int(numslices)
    rs_datafile = datafile_data.reshape((numspatiallocs, timepoints))
    if datamask3d:
        rs_datamask = datamask_data.reshape(numspatiallocs)
    else:
        rs_datamask = datamask_data.reshape((numspatiallocs, timepoints))
    rs_datamask_bin = np.where(rs_datamask > 0.9, 1.0, 0.0)
    rs_templatefile = templatefile_data.reshape(numspatiallocs)
    rs_templatemask = templatemask_data.reshape(numspatiallocs)
    rs_templatemask_bin = np.where(rs_templatemask > 0.1, 1.0, 0.0)
    if regionatlas is not None:
        rs_regionatlas = regionatlas_data.reshape(numspatiallocs)
        numregions = int(np.max(rs_regionatlas))

    fitdata = np.zeros((numspatiallocs, timepoints), dtype="float")
    # residuals = np.zeros((numspatiallocs, timepoints), dtype='float')
    # newtemplate = np.zeros((numspatiallocs), dtype='float')
    # newmask = np.zeros((numspatiallocs), dtype='float')
    if regionatlas is not None:
        lincoffs = np.zeros((numregions, timepoints), dtype="float")
        sqrcoffs = np.zeros((numregions, timepoints), dtype="float")
        offsets = np.zeros((numregions, timepoints), dtype="float")
        rvals = np.zeros((numregions, timepoints), dtype="float")
    else:
        lincoffs = np.zeros(timepoints, dtype="float")
        sqrcoffs = np.zeros(timepoints, dtype="float")
        offsets = np.zeros(timepoints, dtype="float")
        rvals = np.zeros(timepoints, dtype="float")

    if regionatlas is not None:
        print("making region masks")
        regionvoxels = np.zeros((numspatiallocs, numregions), dtype="float")
        for region in range(0, numregions):
            thisregion = np.where((rs_regionatlas *
                                   rs_templatemask_bin) == (region + 1))
            regionvoxels[thisregion, region] = 1.0

    # mask everything
    print("masking template")
    maskedtemplate = rs_templatefile * rs_templatemask_bin

    # cycle over all images
    print("now cycling over all images")
    for thetime in range(0, timepoints):
        print("fitting timepoint", thetime)

        # get the appropriate mask
        if datamask3d:
            for i in range(timepoints):
                thisdatamask = rs_datamask_bin
        else:
            thisdatamask = rs_datamask_bin[:, thetime]
        if regionatlas is not None:
            for region in range(0, numregions):
                voxelstofit = np.where(
                    regionvoxels[:, region] * thisdatamask > 0.5)
                voxelstoreconstruct = np.where(regionvoxels[:, region] > 0.5)
                if order == 2:
                    thefit, R = tide_fit.mlregress(
                        [
                            rs_templatefile[voxelstofit],
                            np.square(rs_templatefile[voxelstofit]),
                        ],
                        rs_datafile[voxelstofit, thetime][0],
                    )
                else:
                    thefit, R = tide_fit.mlregress(
                        rs_templatefile[voxelstofit],
                        rs_datafile[voxelstofit, thetime][0],
                    )
                lincoffs[region, thetime] = thefit[0, 1]
                offsets[region, thetime] = thefit[0, 0]
                rvals[region, thetime] = R
                if order == 2:
                    sqrcoffs[region, thetime] = thefit[0, 2]
                    fitdata[voxelstoreconstruct, thetime] += (
                        sqrcoffs[region, thetime] *
                        np.square(rs_templatefile[voxelstoreconstruct]) +
                        lincoffs[region, thetime] *
                        rs_templatefile[voxelstoreconstruct] +
                        offsets[region, thetime])
                else:
                    fitdata[voxelstoreconstruct,
                            thetime] += (lincoffs[region, thetime] *
                                         rs_templatefile[voxelstoreconstruct] +
                                         offsets[region, thetime])
                # newtemplate += nan_to_num(maskeddata[:, thetime] / lincoffs[region, thetime]) * rs_datamask
                # newmask += rs_datamask * rs_templatemask_bin
        else:
            voxelstofit = np.where(thisdatamask > 0.5)
            voxelstoreconstruct = np.where(rs_templatemask > 0.5)
            thefit, R = tide_fit.mlregress(
                rs_templatefile[voxelstofit], rs_datafile[voxelstofit,
                                                          thetime][0])
            lincoffs[thetime] = thefit[0, 1]
            offsets[thetime] = thefit[0, 0]
            rvals[thetime] = R
            fitdata[voxelstoreconstruct, thetime] = (
                lincoffs[thetime] * rs_templatefile[voxelstoreconstruct] +
                offsets[thetime])
            # if datamask3d:
            #    newtemplate += nan_to_num(maskeddata[:, thetime] / lincoffs[thetime]) * rs_datamask
            # else:
            #    newtemplate += nan_to_num(maskeddata[:, thetime] / lincoffs[thetime]) * rs_datamask[:, thetime]
            # newmask += rs_datamask[:, thetime] * rs_templatemask_bin
    residuals = rs_datafile - fitdata

    # write out the data files
    print("writing time series")
    if order == 2:
        tide_io.writenpvecs(sqrcoffs, outputroot + "_sqrcoffs.txt")
    tide_io.writenpvecs(lincoffs, outputroot + "_lincoffs.txt")
    tide_io.writenpvecs(offsets, outputroot + "_offsets.txt")
    tide_io.writenpvecs(rvals, outputroot + "_rvals.txt")
    if regionatlas is not None:
        for region in range(0, numregions):
            print(
                "region",
                region + 1,
                "slope mean, std:",
                np.mean(lincoffs[:, region]),
                np.std(lincoffs[:, region]),
            )
            print(
                "region",
                region + 1,
                "offset mean, std:",
                np.mean(offsets[:, region]),
                np.std(offsets[:, region]),
            )
    else:
        print("slope mean, std:", np.mean(lincoffs), np.std(lincoffs))
        print("offset mean, std:", np.mean(offsets), np.std(offsets))

    print("writing nifti series")
    tide_io.savetonifti(
        fitdata.reshape((xsize, ysize, numslices, timepoints)),
        datafile_hdr,
        outputroot + "_fit",
    )
    tide_io.savetonifti(
        residuals.reshape((xsize, ysize, numslices, timepoints)),
        datafile_hdr,
        outputroot + "_residuals",
    )
Esempio n. 5
0
def test_io(debug=True, display=False):

    # create outputdir if it doesn't exist
    create_dir(get_test_temp_path())

    # test checkifnifti
    assert tide_io.checkifnifti("test.nii") == True
    assert tide_io.checkifnifti("test.nii.gz") == True
    assert tide_io.checkifnifti("test.txt") == False

    # test checkiftext
    assert tide_io.checkiftext("test.nii") == False
    assert tide_io.checkiftext("test.nii.gz") == False
    assert tide_io.checkiftext("test.txt") == True

    # test getniftiroot
    assert tide_io.getniftiroot("test.nii") == "test"
    assert tide_io.getniftiroot("test.nii.gz") == "test"
    assert tide_io.getniftiroot("test.txt") == "test.txt"

    # test fmritimeinfo
    fmritimeinfothresh = 1e-2
    tr, timepoints = tide_io.fmritimeinfo(
        os.path.join(get_examples_path(), "sub-HAPPYTEST.nii.gz"))
    assert np.fabs(tr - 1.16) < fmritimeinfothresh
    assert timepoints == 110
    tr, timepoints = tide_io.fmritimeinfo(
        os.path.join(get_examples_path(), "sub-RAPIDTIDETEST.nii.gz"))
    assert np.fabs(tr - 1.5) < fmritimeinfothresh
    assert timepoints == 260

    # test niftifile reading
    sizethresh = 1e-3
    happy_img, happy_data, happy_hdr, happydims, happysizes = tide_io.readfromnifti(
        os.path.join(get_examples_path(), "sub-HAPPYTEST.nii.gz"))
    fmri_img, fmri_data, fmri_hdr, fmridims, fmrisizes = tide_io.readfromnifti(
        os.path.join(get_examples_path(), "sub-RAPIDTIDETEST.nii.gz"))
    targetdims = [4, 65, 89, 64, 110, 1, 1, 1]
    targetsizes = [-1.00, 2.39583, 2.395830, 2.4, 1.16, 0.00, 0.00, 0.00]
    if debug:
        print("happydims:", happydims)
        print("targetdims:", targetdims)
        print("happysizes:", happysizes)
        print("targetsizes:", targetsizes)
    for i in range(len(targetdims)):
        assert targetdims[i] == happydims[i]
    assert mse(np.array(targetsizes), np.array(happysizes)) < sizethresh

    # test file writing
    datathresh = 2e-3  # relaxed threshold because sub-RAPIDTIDETEST has been converted to INT16
    tide_io.savetonifti(
        fmri_data, fmri_hdr,
        os.path.join(get_test_temp_path(), "sub-RAPIDTIDETEST_copy.nii.gz"))
    (
        fmricopy_img,
        fmricopy_data,
        fmricopy_hdr,
        fmricopydims,
        fmricopysizes,
    ) = tide_io.readfromnifti(
        os.path.join(get_test_temp_path(), "sub-RAPIDTIDETEST_copy.nii.gz"))
    assert tide_io.checkspacematch(fmri_hdr, fmricopy_hdr)
    assert tide_io.checktimematch(fmridims, fmridims)
    assert mse(fmri_data, fmricopy_data) < datathresh

    # test file header comparisons
    assert tide_io.checkspacematch(happy_hdr, happy_hdr)
    assert not tide_io.checkspacematch(happy_hdr, fmri_hdr)
    assert tide_io.checktimematch(happydims, happydims)
    assert not tide_io.checktimematch(happydims, fmridims)