Esempio n. 1
0
def _procOneVoxelCorrelation(vox,
                             thetc,
                             optiondict,
                             fmri_x,
                             fmritc,
                             os_fmri_x,
                             oversampfreq,
                             corrorigin,
                             lagmininpts,
                             lagmaxinpts,
                             ncprefilter,
                             referencetc,
                             rt_floatset=np.float64,
                             rt_floattype='float64'
                             ):
    if optiondict['oversampfactor'] >= 1:
        thetc[:] = tide_resample.doresample(fmri_x, fmritc, os_fmri_x, method=optiondict['interptype'])
    else:
        thetc[:] = fmritc
    thexcorr, theglobalmax = onecorrelation(thetc,
                                            oversampfreq,
                                            corrorigin,
                                            lagmininpts,
                                            lagmaxinpts,
                                            ncprefilter,
                                            referencetc,
                                            usewindowfunc=optiondict['usewindowfunc'],
                                            detrendorder=optiondict['detrendorder'],
                                            windowfunc=optiondict['windowfunc'],
                                            corrweighting=optiondict['corrweighting'])

    return vox, np.mean(thetc), thexcorr, theglobalmax
Esempio n. 2
0
def _procOneVoxelCorrelation(vox,
                             thetc,
                             optiondict,
                             fmri_x,
                             fmritc,
                             os_fmri_x,
                             oversampfreq,
                             corrorigin,
                             lagmininpts,
                             lagmaxinpts,
                             ncprefilter,
                             referencetc,
                             rt_floatset=np.float64,
                             rt_floattype='float64'
                             ):
    if optiondict['oversampfactor'] >= 1:
        thetc[:] = tide_resample.doresample(fmri_x, fmritc, os_fmri_x, method=optiondict['interptype'])
    else:
        thetc[:] = fmritc
    thexcorr, theglobalmax = onecorrelation(thetc,
                                            oversampfreq,
                                            corrorigin,
                                            lagmininpts,
                                            lagmaxinpts,
                                            ncprefilter,
                                            referencetc,
                                            usewindowfunc=optiondict['usewindowfunc'],
                                            detrendorder=optiondict['detrendorder'],
                                            windowfunc=optiondict['windowfunc'],
                                            corrweighting=optiondict['corrweighting'])

    return vox, np.mean(thetc), thexcorr, theglobalmax
Esempio n. 3
0
def test_fastresampler(debug=False):
    tr = 1.0
    padvalue = 30.0
    testlen = 1000
    shiftdist = 30
    timeaxis = np.arange(0.0, 1.0 * testlen) * tr
    #timecoursein = np.zeros((testlen), dtype='float64')
    timecoursein = np.float64(timeaxis * 0.0)
    midpoint = int(testlen // 2) + 1
    timecoursein[midpoint - 1] = np.float64(1.0)
    timecoursein[midpoint] = np.float64(1.0)
    timecoursein[midpoint + 1] = np.float64(1.0)
    timecoursein -= 0.5

    shiftlist = [-30, -20, -10, 0, 10, 20, 30]

    # generate the fast resampled regressor
    genlaggedtc = fastresampler(timeaxis, timecoursein, padvalue=padvalue)

    if debug:
        plt.figure()
        plt.ylim([-1.0, 2.0 * len(shiftlist) + 1.0])
        plt.hold(True)
        plt.plot(timecoursein)
        legend = ['Original']
        offset = 0.0

    for shiftdist in shiftlist:
        # generate the ground truth rolled regressor
        tcrolled = np.float64(np.roll(timecoursein, shiftdist))

        # generate the fast resampled regressor
        tcshifted = genlaggedtc.yfromx(timeaxis - shiftdist, debug=debug)
        tcshifted = doresample(timeaxis, timecoursein, timeaxis - shiftdist, method='univariate')

        # print out all elements
        for i in range(0, len(tcrolled)):
            print(i, tcrolled[i], tcshifted[i], tcshifted[i] - tcrolled[i])

        # plot if we are doing that
        if debug:
            offset += 1.0
            plt.plot(tcrolled + offset)
            legend.append('Roll ' + str(shiftdist))
            offset += 1.0
            plt.plot(tcshifted + offset)
            legend.append('Fastresampler ' + str(shiftdist))

        # do the tests
        msethresh = 1e-6
        aethresh = 2
        assert mse(tcrolled, tcshifted) < msethresh
        np.testing.assert_almost_equal(tcrolled, tcshifted, aethresh)

    if debug:
        plt.legend(legend)
        plt.show()
Esempio n. 4
0
def test_doresample(debug=False):
    tr = 1.0
    padtime = 30.0
    padlen = int(padtime // tr)
    testlen = 1000
    shiftdist = 30
    timeaxis = np.arange(0.0, 1.0 * testlen) * tr
    # timecoursein = np.zeros((testlen), dtype='float64')
    timecoursein = np.float64(timeaxis * 0.0)
    midpoint = int(testlen // 2) + 1
    timecoursein[midpoint - 1] = np.float64(1.0)
    timecoursein[midpoint] = np.float64(1.0)
    timecoursein[midpoint + 1] = np.float64(1.0)
    timecoursein -= 0.5

    shiftlist = [-30, -20, -10, 0, 10, 20, 30]

    if debug:
        plt.figure()
        plt.ylim([-1.0, 2.0 * len(shiftlist) + 1.0])
        plt.plot(timecoursein)
        legend = ["Original"]
        offset = 0.0

    for shiftdist in shiftlist:
        # generate the ground truth rolled regressor
        tcrolled = np.float64(np.roll(timecoursein, shiftdist))

        # generate the fast resampled regressor
        tcshifted = doresample(
            timeaxis, timecoursein, timeaxis - shiftdist, method="univariate", padlen=padlen,
        )

        # print out all elements
        for i in range(0, len(tcrolled)):
            # print(i, tcrolled[i], tcshifted[i], tcshifted[i] - tcrolled[i])
            pass

        # plot if we are doing that
        if debug:
            offset += 1.0
            plt.plot(tcrolled + offset)
            legend.append("Roll " + str(shiftdist))
            offset += 1.0
            plt.plot(tcshifted + offset)
            legend.append("doresample " + str(shiftdist))

        # do the tests
        msethresh = 1e-6
        aethresh = 2
        assert mse(tcrolled, tcshifted) < msethresh
        np.testing.assert_almost_equal(tcrolled, tcshifted, aethresh)

    if debug:
        plt.legend(legend)
        plt.show()
Esempio n. 5
0
def _procOneVoxelCorrelation(vox,
                             thetc,
                             thecorrelator,
                             fmri_x,
                             fmritc,
                             os_fmri_x,
                             oversampfactor=1,
                             interptype='univariate',
                             rt_floatset=np.float64,
                             rt_floattype='float64'
                             ):
    if oversampfactor >= 1:
        thetc[:] = tide_resample.doresample(fmri_x, fmritc, os_fmri_x, method=interptype)
    else:
        thetc[:] = fmritc
    thexcorr_y, thexcorr_x, theglobalmax = thecorrelator.run(thetc)

    return vox, np.mean(thetc), thexcorr_y, thexcorr_x, theglobalmax
Esempio n. 6
0
def _procOneVoxelPeaks(
    vox,
    thetc,
    theMutualInformationator,
    fmri_x,
    fmritc,
    os_fmri_x,
    xcorr_x,
    thexcorr,
    bipolar=False,
    oversampfactor=1,
    sort=True,
    interptype="univariate",
):

    if oversampfactor >= 1:
        thetc[:] = tide_resample.doresample(fmri_x,
                                            fmritc,
                                            os_fmri_x,
                                            method=interptype)
    else:
        thetc[:] = fmritc
    thepeaks = tide_fit.getpeaks(xcorr_x,
                                 thexcorr,
                                 bipolar=bipolar,
                                 display=False)
    peaklocs = []
    for thepeak in thepeaks:
        peaklocs.append(int(round(thepeak[2], 0)))
    theMI_list = theMutualInformationator.run(thetc, locs=peaklocs)
    hybridpeaks = []
    for i in range(len(thepeaks)):
        hybridpeaks.append([thepeaks[i][0], thepeaks[i][1], theMI_list[i]])
    if sort:
        hybridpeaks.sort(key=lambda x: x[2], reverse=True)
    return vox, hybridpeaks
Esempio n. 7
0
def test_delayestimation(display=False, debug=False):

    # set the number of MKL threads to use
    if mklexists:
        print("disabling MKL")
        mkl.set_num_threads(1)

    # set parameters
    Fs = 10.0
    numpoints = 5000
    numlocs = 21
    refnum = int(numlocs // 2)
    timestep = 0.228764
    oversampfac = 2
    detrendorder = 1
    oversampfreq = Fs * oversampfac
    corrtr = 1.0 / oversampfreq
    smoothingtime = 1.0
    bipolar = False
    interptype = "univariate"
    lagmod = 1000.0
    lagmin = -20.0
    lagmax = 20.0
    lagmininpts = int((-lagmin / corrtr) - 0.5)
    lagmaxinpts = int((lagmax / corrtr) + 0.5)
    peakfittype = "gauss"
    corrweighting = "None"
    similaritymetric = "hybrid"
    windowfunc = "hamming"
    chunksize = 5
    pedestal = 100.0

    # set up the filter
    theprefilter = tide_filt.NoncausalFilter("arb",
                                             transferfunc="brickwall",
                                             debug=False)
    theprefilter.setfreqs(0.009, 0.01, 0.15, 0.16)

    # construct the various test waveforms
    timepoints = np.linspace(0.0,
                             numpoints / Fs,
                             num=numpoints,
                             endpoint=False)
    oversamptimepoints = np.linspace(0.0,
                                     numpoints / Fs,
                                     num=oversampfac * numpoints,
                                     endpoint=False)
    waveforms = np.zeros((numlocs, numpoints), dtype=np.float64)
    paramlist = [
        [0.314, 0.055457, 0.0],
        [-0.723, 0.08347856, np.pi],
        [-0.834, 0.1102947, 0.0],
        [1.0, 0.13425, 0.5],
    ]
    offsets = np.zeros(numlocs, dtype=np.float64)
    amplitudes = np.ones(numlocs, dtype=np.float64)
    for i in range(numlocs):
        offsets[i] = timestep * (i - refnum)
        waveforms[i, :] = multisine(timepoints - offsets[i],
                                    paramlist) + pedestal
    if display:
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        for i in range(numlocs):
            ax.plot(timepoints, waveforms[i, :])
        plt.show()

    threshval = pedestal / 4.0
    waveforms = numpy2shared(waveforms, np.float64)

    referencetc = tide_resample.doresample(timepoints,
                                           waveforms[refnum, :],
                                           oversamptimepoints,
                                           method=interptype)
    referencetc = theprefilter.apply(oversampfreq, referencetc)
    referencetc = tide_math.corrnormalize(referencetc,
                                          detrendorder=detrendorder,
                                          windowfunc=windowfunc)

    # set up theCorrelator
    if debug:
        print("\n\nsetting up theCorrelator")
    theCorrelator = tide_classes.Correlator(
        Fs=oversampfreq,
        ncprefilter=theprefilter,
        detrendorder=detrendorder,
        windowfunc=windowfunc,
        corrweighting=corrweighting,
        debug=True,
    )
    theCorrelator.setreftc(
        np.zeros((oversampfac * numpoints), dtype=np.float64))
    theCorrelator.setlimits(lagmininpts, lagmaxinpts)
    dummy, trimmedcorrscale, dummy = theCorrelator.getfunction()
    corroutlen = np.shape(trimmedcorrscale)[0]
    internalvalidcorrshape = (numlocs, corroutlen)
    corrout, dummy, dummy = allocshared(internalvalidcorrshape, np.float64)
    meanval, dummy, dummy = allocshared((numlocs), np.float64)
    if debug:
        print("corrout shape:", corrout.shape)
        print("theCorrelator: corroutlen=", corroutlen)

    # set up theMutualInformationator
    if debug:
        print("\n\nsetting up theMutualInformationator")
    theMutualInformationator = tide_classes.MutualInformationator(
        Fs=oversampfreq,
        smoothingtime=smoothingtime,
        ncprefilter=theprefilter,
        detrendorder=detrendorder,
        windowfunc=windowfunc,
        madnorm=False,
        lagmininpts=lagmininpts,
        lagmaxinpts=lagmaxinpts,
        debug=False,
    )

    theMutualInformationator.setreftc(
        np.zeros((oversampfac * numpoints), dtype=np.float64))
    theMutualInformationator.setlimits(lagmininpts, lagmaxinpts)

    # set up thefitter
    if debug:
        print("\n\nsetting up thefitter")
    thefitter = tide_classes.SimilarityFunctionFitter(
        lagmod=lagmod,
        lthreshval=0.0,
        uthreshval=1.0,
        bipolar=bipolar,
        lagmin=lagmin,
        lagmax=lagmax,
        absmaxsigma=10000.0,
        absminsigma=0.01,
        debug=False,
        peakfittype=peakfittype,
    )

    lagtc, dummy, dummy = allocshared(waveforms.shape, np.float64)
    fitmask, dummy, dummy = allocshared((numlocs), "uint16")
    failreason, dummy, dummy = allocshared((numlocs), "uint32")
    lagtimes, dummy, dummy = allocshared((numlocs), np.float64)
    lagstrengths, dummy, dummy = allocshared((numlocs), np.float64)
    lagsigma, dummy, dummy = allocshared((numlocs), np.float64)
    gaussout, dummy, dummy = allocshared(internalvalidcorrshape, np.float64)
    windowout, dummy, dummy = allocshared(internalvalidcorrshape, np.float64)
    rvalue, dummy, dummy = allocshared((numlocs), np.float64)
    r2value, dummy, dummy = allocshared((numlocs), np.float64)
    fitcoff, dummy, dummy = allocshared((numlocs), np.float64)
    fitNorm, dummy, dummy = allocshared((numlocs), np.float64)
    R2, dummy, dummy = allocshared((numlocs), np.float64)
    movingsignal, dummy, dummy = allocshared(waveforms.shape, np.float64)
    filtereddata, dummy, dummy = allocshared(waveforms.shape, np.float64)

    for nprocs in [4, 1]:
        # call correlationpass
        if debug:
            print("\n\ncalling correlationpass")
            print("waveforms shape:", waveforms.shape)
        (
            voxelsprocessed_cp,
            theglobalmaxlist,
            trimmedcorrscale,
        ) = tide_calcsimfunc.correlationpass(
            waveforms[:, :],
            referencetc,
            theCorrelator,
            timepoints,
            oversamptimepoints,
            lagmininpts,
            lagmaxinpts,
            corrout,
            meanval,
            nprocs=nprocs,
            alwaysmultiproc=False,
            oversampfactor=oversampfac,
            interptype=interptype,
            showprogressbar=False,
            chunksize=chunksize,
        )
        if debug:
            print(voxelsprocessed_cp, len(theglobalmaxlist),
                  len(trimmedcorrscale))

        if display:
            fig = plt.figure()
            ax = fig.add_subplot(1, 1, 1)
            for i in range(numlocs):
                ax.plot(trimmedcorrscale, corrout[i, :])
            plt.show()

        # call peakeval
        if debug:
            print("\n\ncalling peakeval")
        voxelsprocessed_pe, thepeakdict = tide_peakeval.peakevalpass(
            waveforms[:, :],
            referencetc,
            timepoints,
            oversamptimepoints,
            theMutualInformationator,
            trimmedcorrscale,
            corrout,
            nprocs=nprocs,
            alwaysmultiproc=False,
            bipolar=bipolar,
            oversampfactor=oversampfac,
            interptype=interptype,
            showprogressbar=False,
            chunksize=chunksize,
        )

        if debug:
            for key in thepeakdict:
                print(key, thepeakdict[key])

        # call thefitter
        if debug:
            print("\n\ncalling fitter")
        thefitter.setfunctype(similaritymetric)
        thefitter.setcorrtimeaxis(trimmedcorrscale)
        genlagtc = tide_resample.FastResampler(timepoints,
                                               waveforms[refnum, :])

        if display:
            fig = plt.figure()
            ax = fig.add_subplot(1, 1, 1)
        if nprocs == 1:
            proctype = "singleproc"
        else:
            proctype = "multiproc"
        for peakfittype in ["fastgauss", "quad", "fastquad", "gauss"]:
            thefitter.setpeakfittype(peakfittype)
            voxelsprocessed_fc = tide_simfuncfit.fitcorr(
                genlagtc,
                timepoints,
                lagtc,
                trimmedcorrscale,
                thefitter,
                corrout,
                fitmask,
                failreason,
                lagtimes,
                lagstrengths,
                lagsigma,
                gaussout,
                windowout,
                R2,
                peakdict=thepeakdict,
                nprocs=nprocs,
                alwaysmultiproc=False,
                fixdelay=None,
                showprogressbar=False,
                chunksize=chunksize,
                despeckle_thresh=100.0,
                initiallags=None,
            )
            if debug:
                print(voxelsprocessed_fc)

            if debug:
                print("\npeakfittype:", peakfittype)
                for i in range(numlocs):
                    print(
                        "location",
                        i,
                        ":",
                        offsets[i],
                        lagtimes[i],
                        lagtimes[i] - offsets[i],
                        lagstrengths[i],
                        lagsigma[i],
                    )
                if display:
                    ax.plot(offsets, lagtimes, label=peakfittype)
            if checkfits(lagtimes, offsets, tolerance=0.01):
                print(proctype, peakfittype, " lagtime: pass")
                assert True
            else:
                print(proctype, peakfittype, " lagtime: fail")
                assert False
            if checkfits(lagstrengths, amplitudes, tolerance=0.05):
                print(proctype, peakfittype, " lagstrength: pass")
                assert True
            else:
                print(proctype, peakfittype, " lagstrength: fail")
                assert False

    if display:
        ax.legend()
        plt.show()

    filteredwaveforms, dummy, dummy = allocshared(waveforms.shape, np.float64)
    for i in range(numlocs):
        filteredwaveforms[i, :] = theprefilter.apply(Fs, waveforms[i, :])

    for nprocs in [4, 1]:
        voxelsprocessed_glm = tide_glmpass.glmpass(
            numlocs,
            waveforms[:, :],
            threshval,
            lagtc,
            meanval,
            rvalue,
            r2value,
            fitcoff,
            fitNorm,
            movingsignal,
            filtereddata,
            nprocs=nprocs,
            alwaysmultiproc=False,
            showprogressbar=False,
            mp_chunksize=chunksize,
        )

        if nprocs == 1:
            proctype = "singleproc"
        else:
            proctype = "multiproc"
        diffsignal = filtereddata
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        # ax.plot(timepoints, filtereddata[refnum, :], label='filtereddata')
        ax.plot(oversamptimepoints, referencetc, label="referencetc")
        ax.plot(timepoints, movingsignal[refnum, :], label="movingsignal")
        ax.legend()
        plt.show()

        print(proctype, "glmpass", np.mean(diffsignal),
              np.max(np.fabs(diffsignal)))