Esempio n. 1
0
    def load(cls, path: Text) -> Policy:
        filename = os.path.join(path, "sklearn_model.pkl")
        zero_features_filename = os.path.join(path, "zero_state_features.pkl")
        if not os.path.exists(path):
            raise OSError("Failed to load dialogue model. Path {} "
                          "doesn't exist".format(os.path.abspath(filename)))

        featurizer = TrackerFeaturizer.load(path)
        assert isinstance(featurizer, MaxHistoryTrackerFeaturizer), (
            "Loaded featurizer of type {}, should be "
            "MaxHistoryTrackerFeaturizer.".format(type(featurizer).__name__))

        meta_file = os.path.join(path, "sklearn_policy.json")
        meta = json.loads(rasa.shared.utils.io.read_file(meta_file))
        zero_state_features = io_utils.pickle_load(zero_features_filename)

        policy = cls(
            featurizer=featurizer,
            priority=meta["priority"],
            zero_state_features=zero_state_features,
        )

        state = io_utils.pickle_load(filename)

        vars(policy).update(state)

        logger.info("Loaded sklearn model")
        return policy
Esempio n. 2
0
    def load(cls, path: Union[Text, Path]) -> Policy:
        filename = Path(path) / "sklearn_model.pkl"
        zero_features_filename = Path(path) / "zero_state_features.pkl"
        if not Path(path).exists():
            raise OSError(
                f"Failed to load dialogue model. Path {filename.absolute()} "
                f"doesn't exist.")

        featurizer = TrackerFeaturizer.load(path)
        assert isinstance(featurizer, MaxHistoryTrackerFeaturizer), (
            f"Loaded featurizer of type {type(featurizer).__name__}, should be "
            f"MaxHistoryTrackerFeaturizer.")

        meta_file = Path(path) / "sklearn_policy.json"
        meta = json.loads(rasa.shared.utils.io.read_file(meta_file))
        zero_state_features = io_utils.pickle_load(zero_features_filename)

        policy = cls(
            featurizer=featurizer,
            priority=meta["priority"],
            zero_state_features=zero_state_features,
        )

        state = io_utils.pickle_load(filename)

        vars(policy).update(state)

        logger.info("Loaded sklearn model")
        return policy
Esempio n. 3
0
    def load(
        cls,
        config: Dict[Text, Any],
        model_storage: ModelStorage,
        resource: Resource,
        execution_context: ExecutionContext,
        **kwargs: Any,
    ) -> Policy:
        """Loads a trained policy (see parent class for full docstring)."""
        featurizer = None

        try:
            with model_storage.read_from(resource) as path:
                if (Path(path) / FEATURIZER_FILE).is_file():
                    featurizer = TrackerFeaturizer.load(path)

                config.update(kwargs)

        except (ValueError, FileNotFoundError, FileIOException):
            logger.debug(
                f"Couldn't load metadata for policy '{cls.__name__}' as the persisted "
                f"metadata couldn't be loaded."
            )

        return cls(
            config, model_storage, resource, execution_context, featurizer=featurizer,
        )
Esempio n. 4
0
    def load(
        cls,
        config: Dict[Text, Any],
        model_storage: ModelStorage,
        resource: Resource,
        execution_context: ExecutionContext,
        **kwargs: Any,
    ) -> MemoizationPolicy:
        """Loads a trained policy (see parent class for full docstring)."""
        featurizer = None
        lookup = None

        try:
            with model_storage.read_from(resource) as path:
                metadata_file = Path(path) / cls._metadata_filename()
                metadata = rasa.shared.utils.io.read_json_file(metadata_file)
                lookup = metadata["lookup"]

                if (Path(path) / FEATURIZER_FILE).is_file():
                    featurizer = TrackerFeaturizer.load(path)

        except (ValueError, FileNotFoundError, FileIOException):
            logger.warning(
                f"Couldn't load metadata for policy '{cls.__name__}' as the persisted "
                f"metadata couldn't be loaded.")

        return cls(
            config,
            model_storage,
            resource,
            execution_context,
            featurizer=featurizer,
            lookup=lookup,
        )
Esempio n. 5
0
    def load(
        cls,
        path: Union[Text, Path],
        should_finetune: bool = False,
        epoch_override: int = defaults[EPOCHS],
        **kwargs: Any,
    ) -> "TEDPolicy":
        """Loads a policy from the storage.

        Args:
            path: Path on disk where policy is persisted.
            should_finetune: Whether to load the policy for finetuning.
            epoch_override: Override the number of epochs in persisted
                configuration for further finetuning.
            **kwargs: Any other arguments

        Returns:
            Loaded policy

        Raises:
            `PolicyModelNotFound` if the model is not found in the supplied `path`.
        """
        model_path = Path(path)

        if not model_path.exists():
            logger.warning(
                f"Failed to load {cls.__class__.__name__} model. Path "
                f"'{model_path.absolute()}' doesn't exist.")
            return cls()

        featurizer = TrackerFeaturizer.load(path)

        if not (model_path /
                f"{cls._metadata_filename()}.data_example.pkl").is_file():
            return cls(featurizer=featurizer)

        model_utilities = cls._load_model_utilities(model_path)

        model_utilities["meta"] = cls._update_loaded_params(
            model_utilities["meta"])

        if should_finetune:
            model_utilities["meta"][EPOCHS] = epoch_override

        (
            model_data_example,
            predict_data_example,
        ) = cls._construct_model_initialization_data(
            model_utilities["loaded_data"])

        model = cls._load_tf_model(
            model_utilities,
            model_data_example,
            predict_data_example,
            featurizer,
            should_finetune,
        )

        return cls._load_policy_with_model(model, featurizer, model_utilities,
                                           should_finetune)
Esempio n. 6
0
    def load(cls, path: Union[Text, Path]) -> "Policy":
        """Loads a policy from path.

        Args:
            path: Path to load policy from.

        Returns:
            An instance of `Policy`.
        """
        metadata_file = Path(path) / cls._metadata_filename()

        if metadata_file.is_file():
            data = json.loads(rasa.shared.utils.io.read_file(metadata_file))

            if (Path(path) / FEATURIZER_FILE).is_file():
                featurizer = TrackerFeaturizer.load(path)
                data["featurizer"] = featurizer

            return cls(**data)

        logger.info(
            f"Couldn't load metadata for policy '{cls.__name__}'. "
            f"File '{metadata_file}' doesn't exist."
        )
        return cls()
def test_persist_and_load_tracker_featurizer(tmp_path: Text,
                                             moodbot_domain: Domain):
    state_featurizer = SingleStateFeaturizer()
    state_featurizer.prepare_for_training(moodbot_domain, RegexInterpreter())
    tracker_featurizer = MaxHistoryTrackerFeaturizer(state_featurizer)

    tracker_featurizer.persist(tmp_path)

    loaded_tracker_featurizer = TrackerFeaturizer.load(tmp_path)

    assert loaded_tracker_featurizer is not None
    assert loaded_tracker_featurizer.state_featurizer is not None
Esempio n. 8
0
    def load(cls, path: Text) -> "MemoizationPolicy":

        featurizer = TrackerFeaturizer.load(path)
        memorized_file = os.path.join(path, "memorized_turns.json")
        if os.path.isfile(memorized_file):
            data = json.loads(rasa.shared.utils.io.read_file(memorized_file))
            return cls(featurizer=featurizer,
                       priority=data["priority"],
                       lookup=data["lookup"])
        else:
            logger.info("Couldn't load memoization for policy. "
                        "File '{}' doesn't exist. Falling back to empty "
                        "turn memory.".format(memorized_file))
            return cls()
Esempio n. 9
0
    def load(cls, path: Union[Text, Path], **kwargs: Any) -> "Policy":
        """Loads a policy from path.

        Args:
            path: Path to load policy from.

        Returns:
            An instance of `Policy`.
        """
        metadata_file = Path(path) / cls._metadata_filename()

        if metadata_file.is_file():
            data = json.loads(rasa.shared.utils.io.read_file(metadata_file))

            if (Path(path) / FEATURIZER_FILE).is_file():
                featurizer = TrackerFeaturizer.load(path)
                data["featurizer"] = featurizer

            data.update(kwargs)

            constructor_args = rasa.shared.utils.common.arguments_of(cls)
            if "kwargs" not in constructor_args:
                if set(data.keys()).issubset(set(constructor_args)):
                    rasa.shared.utils.io.raise_deprecation_warning(
                        f"`{cls.__name__}.__init__` does not accept `**kwargs` "
                        f"This is required for contextual information e.g. the flag "
                        f"`should_finetune`.",
                        warn_until_version="3.0.0",
                    )
                else:
                    raise UnsupportedDialogueModelError(
                        f"`{cls.__name__}.__init__` does not accept `**kwargs`. "
                        f"Attempting to pass {data} to the policy. "
                        f"This argument should be added to all policies by "
                        f"Rasa Open Source 3.0.0."
                    )

            return cls(**data)

        logger.info(
            f"Couldn't load metadata for policy '{cls.__name__}'. "
            f"File '{metadata_file}' doesn't exist."
        )
        return cls()
Esempio n. 10
0
    def load(cls, path: Text) -> "TEDPolicy":
        """Loads a policy from the storage.
        **Needs to load its featurizer**
        """

        if not os.path.exists(path):
            raise Exception(
                f"Failed to load TED policy model. Path "
                f"'{os.path.abspath(path)}' doesn't exist."
            )

        model_path = Path(path)
        tf_model_file = model_path / f"{SAVE_MODEL_FILE_NAME}.tf_model"

        featurizer = TrackerFeaturizer.load(path)

        if not (model_path / f"{SAVE_MODEL_FILE_NAME}.data_example.pkl").is_file():
            return cls(featurizer=featurizer)

        loaded_data = io_utils.pickle_load(
            model_path / f"{SAVE_MODEL_FILE_NAME}.data_example.pkl"
        )
        label_data = io_utils.pickle_load(
            model_path / f"{SAVE_MODEL_FILE_NAME}.label_data.pkl"
        )
        zero_state_features = io_utils.pickle_load(
            model_path / f"{SAVE_MODEL_FILE_NAME}.zero_state_features.pkl"
        )
        label_data = RasaModelData(data=label_data)
        meta = io_utils.pickle_load(model_path / f"{SAVE_MODEL_FILE_NAME}.meta.pkl")
        priority = io_utils.json_unpickle(
            model_path / f"{SAVE_MODEL_FILE_NAME}.priority.pkl"
        )

        model_data_example = RasaModelData(
            label_key=LABEL_KEY, label_sub_key=LABEL_SUB_KEY, data=loaded_data
        )
        meta = train_utils.update_similarity_type(meta)

        model = TED.load(
            str(tf_model_file),
            model_data_example,
            data_signature=model_data_example.get_signature(),
            config=meta,
            max_history_tracker_featurizer_used=isinstance(
                featurizer, MaxHistoryTrackerFeaturizer
            ),
            label_data=label_data,
        )

        # build the graph for prediction
        predict_data_example = RasaModelData(
            label_key=LABEL_KEY,
            label_sub_key=LABEL_SUB_KEY,
            data={
                feature_name: features
                for feature_name, features in model_data_example.items()
                if feature_name
                in STATE_LEVEL_FEATURES + FEATURES_TO_ENCODE + [DIALOGUE]
            },
        )
        model.build_for_predict(predict_data_example)

        return cls(
            featurizer=featurizer,
            priority=priority,
            model=model,
            zero_state_features=zero_state_features,
            **meta,
        )
Esempio n. 11
0
    def load(
        cls,
        path: Union[Text, Path],
        should_finetune: bool = False,
        epoch_override: int = defaults[EPOCHS],
        **kwargs: Any,
    ) -> "TEDPolicy":
        """Loads a policy from the storage.

        **Needs to load its featurizer**
        """
        model_path = Path(path)

        if not model_path.exists():
            raise Exception(f"Failed to load TED policy model. Path "
                            f"'{model_path.absolute()}' doesn't exist.")

        tf_model_file = model_path / f"{SAVE_MODEL_FILE_NAME}.tf_model"

        featurizer = TrackerFeaturizer.load(path)

        if not (model_path /
                f"{SAVE_MODEL_FILE_NAME}.data_example.pkl").is_file():
            return cls(featurizer=featurizer)

        loaded_data = io_utils.pickle_load(
            model_path / f"{SAVE_MODEL_FILE_NAME}.data_example.pkl")
        label_data = io_utils.pickle_load(
            model_path / f"{SAVE_MODEL_FILE_NAME}.label_data.pkl")
        zero_state_features = io_utils.pickle_load(
            model_path / f"{SAVE_MODEL_FILE_NAME}.zero_state_features.pkl")
        label_data = RasaModelData(data=label_data)
        meta = io_utils.pickle_load(model_path /
                                    f"{SAVE_MODEL_FILE_NAME}.meta.pkl")
        priority = io_utils.json_unpickle(
            model_path / f"{SAVE_MODEL_FILE_NAME}.priority.pkl")

        model_data_example = RasaModelData(label_key=LABEL_KEY,
                                           label_sub_key=LABEL_SUB_KEY,
                                           data=loaded_data)
        meta = train_utils.update_similarity_type(meta)

        meta[EPOCHS] = epoch_override

        model = TED.load(
            str(tf_model_file),
            model_data_example,
            data_signature=model_data_example.get_signature(),
            config=meta,
            max_history_tracker_featurizer_used=isinstance(
                featurizer, MaxHistoryTrackerFeaturizer),
            label_data=label_data,
            finetune_mode=should_finetune,
        )

        if not should_finetune:
            # build the graph for prediction

            features_to_select = STATE_LEVEL_FEATURES + FEATURES_TO_ENCODE + [
                DIALOGUE
            ]
            predict_data_example = RasaModelData(
                label_key=LABEL_KEY,
                label_sub_key=LABEL_SUB_KEY,
                data={
                    feature_name: features
                    for feature_name, features in model_data_example.items()
                    if feature_name in features_to_select
                },
            )
            model.build_for_predict(predict_data_example)

        return cls(
            featurizer=featurizer,
            priority=priority,
            model=model,
            zero_state_features=zero_state_features,
            should_finetune=should_finetune,
            **meta,
        )
Esempio n. 12
0
def test_fail_to_load_non_existent_featurizer():
    assert TrackerFeaturizer.load("non_existent_class") is None