Esempio n. 1
0
def test_count_vector_featurizer_using_tokens(tokens, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({"token_pattern": r'(?u)\b\w+\b'})

    # using empty string instead of real text string to make sure
    # count vector only can come from `tokens` feature.
    # using `message.text` can not get correct result

    tokens_feature = [Token(i, 0) for i in tokens]

    train_message = Message("")
    train_message.set("tokens", tokens_feature)
    train_message.set("intent", "bla")  # this is needed for a valid training example
    data = TrainingData([train_message])

    ftr.train(data)

    test_message = Message("")
    test_message.set("tokens", tokens_feature)

    ftr.process(test_message)

    assert np.all(test_message.get("text_features") == expected)
Esempio n. 2
0
def test_count_vector_featurizer(sentence, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({"token_pattern": r'(?u)\b\w+\b'})
    message = Message(sentence)
    message.set("intent", "bla")
    data = TrainingData([message])

    ftr.train(data)
    ftr.process(message)

    assert np.all(message.get("text_features")[0] == expected)
Esempio n. 3
0
def test_count_vector_featurizer_oov_token(sentence, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({"token_pattern": r'(?u)\b\w+\b',
                                  "OOV_token": '__oov__'})
    train_message = Message(sentence)
    train_message.set("intent", "bla")
    data = TrainingData([train_message])
    ftr.train(data)

    test_message = Message(sentence)
    ftr.process(test_message)

    assert np.all(test_message.get("text_features") == expected)
Esempio n. 4
0
def test_count_vector_featurizer(sentence, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({"token_pattern": r'(?u)\b\w+\b'})
    train_message = Message(sentence)
    # this is needed for a valid training example
    train_message.set("intent", "bla")
    data = TrainingData([train_message])
    ftr.train(data)

    test_message = Message(sentence)
    ftr.process(test_message)

    assert np.all(test_message.get("text_features") == expected)
Esempio n. 5
0
def test_count_vector_featurizer_using_tokens(tokens, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({"token_pattern": r'(?u)\b\w+\b'})

    # using empty string instead of real text string to make sure
    # count vector only can come from `tokens` feature.
    # using `message.text` can not get correct result

    tokens_feature = [Token(i, 0) for i in tokens]

    train_message = Message("")
    train_message.set("tokens", tokens_feature)
    # this is needed for a valid training example
    train_message.set("intent", "bla")
    data = TrainingData([train_message])

    ftr.train(data)

    test_message = Message("")
    test_message.set("tokens", tokens_feature)

    ftr.process(test_message)

    assert np.all(test_message.get("text_features") == expected)
Esempio n. 6
0
def test_count_vector_featurizer(sentence, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({"token_pattern": r'(?u)\b\w+\b'})
    message = Message(sentence)
    message.set("intent", "bla")
    data = TrainingData([message])

    ftr.train(data)
    ftr.process(message)

    assert np.all(message.get("text_features")[0] == expected)
Esempio n. 7
0
def test_count_vector_featurizer(sentence, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({"token_pattern": r'(?u)\b\w+\b'})
    train_message = Message(sentence)
    # this is needed for a valid training example
    train_message.set("intent", "bla")
    data = TrainingData([train_message])
    ftr.train(data)

    test_message = Message(sentence)
    ftr.process(test_message)

    assert np.all(test_message.get("text_features") == expected)
def test_count_vector_featurizer_oov_token(sentence, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({
        "token_pattern": r'(?u)\b\w+\b',
        "OOV_token": '__oov__'
    })
    train_message = Message(sentence)
    train_message.set("intent", "bla")
    data = TrainingData([train_message])
    ftr.train(data)

    test_message = Message(sentence)
    ftr.process(test_message)

    assert np.all(test_message.get("text_features") == expected)
def test_count_vector_featurizer(sentence, expected):
    from rasa_nlu.featurizers.count_vectors_featurizer import \
        CountVectorsFeaturizer

    ftr = CountVectorsFeaturizer({"min_ngram": 1,
                                  "max_ngram": 2,
                                  "analyzer": 'char'})
    train_message = Message(sentence)
    # this is needed for a valid training example
    train_message.set("intent", "bla")
    data = TrainingData([train_message])
    ftr.train(data)

    test_message = Message(sentence)
    ftr.process(test_message)

    assert np.all(test_message.get("text_features") == expected)