Esempio n. 1
0
def predict_wstack_single(vis,
                          model,
                          remove=True,
                          gcfcf=None,
                          **kwargs) -> Visibility:
    """ Predict using a single w slices.
    
    This processes a single w plane, rotating out the w beam for the average w

    The w-stacking or w-slicing approach is to partition the visibility data by slices in w. The measurement equation is
    approximated as:

    .. math::

        V(u,v,w) =\\sum_i \\int \\frac{ I(l,m) e^{-2 \\pi j (w_i(\\sqrt{1-l^2-m^2}-1))})}{\\sqrt{1-l^2-m^2}} e^{-2 \\pi j (ul+vm)} dl dm

    If images constructed from slices in w are added after applying a w-dependent image plane correction, the w term will be corrected.

    :param vis: Visibility to be predicted
    :param model: model image
    :return: resulting visibility (in place works)
    """

    assert isinstance(vis, Visibility), vis
    assert image_is_canonical(model)

    vis.data['vis'][...] = 0.0

    log.debug("predict_wstack_single: predicting using single w slice")

    # We might want to do wprojection so we remove the average w
    w_average = numpy.average(vis.w)
    if remove:
        vis.data['uvw'][..., 2] -= w_average
    tempvis = copy_visibility(vis)

    # Calculate w beam and apply to the model. The imaginary part is not needed
    workimage = copy_image(model)
    w_beam = create_w_term_like(model, w_average, vis.phasecentre)

    # Do the real part
    workimage.data = w_beam.data.real * model.data
    vis = predict_2d(vis, workimage, gcfcf=gcfcf, **kwargs)

    # and now the imaginary part
    workimage.data = w_beam.data.imag * model.data
    tempvis = predict_2d(tempvis, workimage, gcfcf=gcfcf, **kwargs)
    vis.data['vis'] -= 1j * tempvis.data['vis']

    if remove:
        vis.data['uvw'][..., 2] += w_average

    return vis
Esempio n. 2
0
    def test_insert_skycomponent_FFT_IQUV(self):

        self.actualSetup(dopol=True)

        self.sc = create_skycomponent(direction=self.phasecentre,
                                      flux=self.sc.flux,
                                      frequency=self.component_frequency,
                                      polarisation_frame=self.image_pol)

        insert_skycomponent(self.model, self.sc)
        npixel = self.model.shape[3]
        # WCS is 1-relative
        rpix = numpy.round(self.model.wcs.wcs.crpix).astype('int') - 1
        assert rpix[0] == npixel // 2
        assert rpix[1] == npixel // 2
        # The phase centre is at rpix[0], rpix[1] in 0-relative pixels
        assert_array_almost_equal(self.model.data[2, :, rpix[1], rpix[0]],
                                  self.flux[3, :], 8)

        # If we predict the visibility, then the imaginary part must be zero. This is determined entirely
        # by shift_vis_to_image in processing_components.imaging.base
        self.vis.data['vis'][...] = 0.0
        self.vis = predict_2d(self.vis, self.model)
        # The actual phase centre of a numpy FFT is at nx //2, nx //2 (0 rel).

        assert numpy.max(numpy.abs(self.vis.vis[..., 0].imag)) == 0.0
        assert numpy.max(numpy.abs(self.vis.vis[..., 3].imag)) == 0.0
Esempio n. 3
0
    def setUp(self):
        from rascil.data_models.parameters import rascil_path
        self.dir = rascil_path('test_results')
        self.lowcore = create_named_configuration('LOWBD2-CORE')
        self.times = (numpy.pi / (12.0)) * numpy.linspace(-3.0, 3.0, 7)
        self.frequency = numpy.array([1e8])
        self.channel_bandwidth = numpy.array([1e6])
        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.vis = create_visibility(
            self.lowcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            weight=1.0,
            polarisation_frame=PolarisationFrame('stokesI'),
            zerow=True)
        self.vis.data['vis'] *= 0.0

        # Create model
        self.test_model = create_test_image(cellsize=0.001,
                                            phasecentre=self.vis.phasecentre,
                                            frequency=self.frequency)
        self.vis = predict_2d(self.vis, self.test_model)
        assert numpy.max(numpy.abs(self.vis.vis)) > 0.0
        self.model = create_image_from_visibility(
            self.vis,
            npixel=512,
            cellsize=0.001,
            polarisation_frame=PolarisationFrame('stokesI'))
        self.dirty, sumwt = invert_2d(self.vis, self.model)
        self.psf, sumwt = invert_2d(self.vis, self.model, dopsf=True)
Esempio n. 4
0
    def _predict_base(self,
                      fluxthreshold=1.0,
                      gcf=None,
                      cf=None,
                      name='predict_2d',
                      gcfcf=None,
                      **kwargs):

        vis = predict_2d(self.vis, self.model, gcfcf=gcfcf, **kwargs)
        vis.data['vis'] = self.vis.data['vis'] - vis.data['vis']
        dirty = invert_2d(vis,
                          self.model,
                          dopsf=False,
                          normalize=True,
                          gcfcf=gcfcf)

        if self.persist:
            export_image_to_fits(
                dirty[0],
                '%s/test_imaging_%s_residual.fits' % (self.dir, name))
        assert numpy.max(numpy.abs(dirty[0].data)), "Residual image is empty"

        maxabs = numpy.max(numpy.abs(dirty[0].data))
        assert maxabs < fluxthreshold, "Error %.3f greater than fluxthreshold %.3f " % (
            maxabs, fluxthreshold)
Esempio n. 5
0
 def test_predict_2d_point_block(self):
     self.actualSetUp(zerow=True, block=True)
     self.model.data[...] = 0.0
     nchan, npol, ny, nx = self.model.shape
     self.model.data[0, 0, ny // 2, nx // 2] = 1.0
     vis = predict_2d(self.vis, self.model)
     assert numpy.max(numpy.abs(vis.vis-1.0)) < 1e-12
Esempio n. 6
0
 def setUp(self):
     from rascil.data_models.parameters import rascil_path
     self.lowcore = create_named_configuration('LOWBD2-CORE')
     self.dir = rascil_path('test_results')
     self.times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 7)
     self.image_frequency = numpy.linspace(0.9e8, 1.1e8, 5)
     self.component_frequency = numpy.linspace(0.8e8, 1.2e8, 7)
     self.channel_bandwidth = numpy.array(5*[1e7])
     self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')
     self.vis = create_visibility(self.lowcore, self.times, self.image_frequency,
                                  channel_bandwidth=self.channel_bandwidth,
                                  phasecentre=self.phasecentre, weight=1.0,
                                  polarisation_frame=PolarisationFrame('stokesI'), zerow=True)
     self.vis.data['vis'] *= 0.0
     
     # Create model
     self.model = create_test_image(cellsize=0.0015, phasecentre=self.vis.phasecentre, frequency=self.image_frequency)
     self.model.data[self.model.data > 1.0] = 1.0
     self.vis = predict_2d(self.vis, self.model)
     assert numpy.max(numpy.abs(self.vis.vis)) > 0.0
     
     dphasecentre = SkyCoord(ra=+181.0 * u.deg, dec=-58.0 * u.deg, frame='icrs', equinox='J2000')
     flux = [[numpy.power(f/1e8, -0.7)] for f in self.component_frequency]
     self.sc = create_skycomponent(direction=dphasecentre, flux=flux,
                                 frequency=self.component_frequency,
                                 polarisation_frame=PolarisationFrame('stokesI'))
Esempio n. 7
0
 def test_predict_2d_point_block_IQUV(self):
     self.actualSetUp(zerow=True, block=True, image_pol=PolarisationFrame("stokesIQUV"))
     self.model.data[...] = 0.0
     nchan, npol, ny, nx = self.model.shape
     self.model.data[0, 0, ny // 2, nx // 2] = 1.0
     vis = predict_2d(self.vis, self.model)
     assert numpy.max(numpy.abs(vis.vis[...,0]-1.0)) < 1e-12
     assert numpy.max(numpy.abs(vis.vis[...,1])) < 1e-12
     assert numpy.max(numpy.abs(vis.vis[...,2])) < 1e-12
     assert numpy.max(numpy.abs(vis.vis[...,3]-1.0)) < 1e-12
Esempio n. 8
0
 def test_predict_2d_offset_point(self):
     self.actualSetUp(zerow=True, block=True)
     nchan, npol, ny, nx = self.model.shape
     for oversampling in [15]:
         self.model.data[...] = 0.0
         self.model.data[0, 0, ny // 2 - ny // 8, nx // 2] = 1.0
         vis = predict_2d(self.vis, self.model, oversampling=oversampling)
         print(oversampling, numpy.max(numpy.abs(vis.vis)))
         
         plot_visibility([vis], x="uvdist")
         plot_visibility([vis], x="uvdist", y="phase")
Esempio n. 9
0
    def test_insert_skycomponent_FFT(self):
        
        self.model.data *= 0.0
        self.sc = create_skycomponent(direction=self.phasecentre, flux=self.sc.flux,
                                    frequency=self.component_frequency,
                                    polarisation_frame=PolarisationFrame('stokesI'))

        insert_skycomponent(self.model, self.sc)
        npixel = self.model.shape[3]
        # WCS is 1-relative
        rpix = numpy.round(self.model.wcs.wcs.crpix).astype('int') - 1
        assert rpix[0] == npixel // 2
        assert rpix[1] == npixel // 2
        # The phase centre is at rpix[0], rpix[1] in 0-relative pixels
        assert self.model.data[2, 0, rpix[1], rpix[0]] == 1.0
        # If we predict the visibility, then the imaginary part must be zero. This is determined entirely
        # by shift_vis_to_image in processing_components.imaging.base
        self.vis.data['vis'][...] = 0.0
        self.vis = predict_2d(self.vis, self.model)
        # The actual phase centre of a numpy FFT is at nx //2, nx //2 (0 rel).
        assert numpy.max(numpy.abs(self.vis.vis.imag)) <1e-3
 def setUp(self):
     from rascil.data_models.parameters import rascil_path
     self.dir = rascil_path('test_results')
     self.persist = os.getenv("RASCIL_PERSIST", False)
     self.niter = 1000
     self.lowcore = create_named_configuration('LOWBD2-CORE')
     self.nchan = 5
     self.times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 7)
     self.frequency = numpy.linspace(0.9e8, 1.1e8, self.nchan)
     self.channel_bandwidth = numpy.array(self.nchan * [self.frequency[1] - self.frequency[0]])
     self.phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=-45.0 * u.deg, frame='icrs', equinox='J2000')
     self.vis = create_visibility(self.lowcore, self.times, self.frequency, self.channel_bandwidth,
                                  phasecentre=self.phasecentre, weight=1.0,
                                  polarisation_frame=PolarisationFrame('stokesI'), zerow=True)
     self.vis.data['vis'] *= 0.0
     
     # Create model
     self.test_model = create_low_test_image_from_gleam(npixel=512, cellsize=0.001,
                                                        phasecentre=self.vis.phasecentre,
                                                        frequency=self.frequency,
                                                        channel_bandwidth=self.channel_bandwidth,
                                                        flux_limit=1.0)
     beam = create_low_test_beam(self.test_model)
     if self.persist: export_image_to_fits(beam, "%s/test_deconvolve_mmclean_beam.fits" % self.dir)
     self.test_model.data *= beam.data
     if self.persist: export_image_to_fits(self.test_model, "%s/test_deconvolve_mmclean_model.fits" % self.dir)
     self.vis = predict_2d(self.vis, self.test_model)
     assert numpy.max(numpy.abs(self.vis.vis)) > 0.0
     self.model = create_image_from_visibility(self.vis, npixel=512, cellsize=0.001,
                                               polarisation_frame=PolarisationFrame('stokesI'))
     self.dirty, sumwt = invert_2d(self.vis, self.model)
     self.psf, sumwt = invert_2d(self.vis, self.model, dopsf=True)
     if self.persist: export_image_to_fits(self.dirty, "%s/test_deconvolve_mmclean-dirty.fits" % self.dir)
     if self.persist: export_image_to_fits(self.psf, "%s/test_deconvolve_mmclean-psf.fits" % self.dir)
     window = numpy.ones(shape=self.model.shape, dtype=numpy.bool)
     window[..., 129:384, 129:384] = True
     self.innerquarter = create_image_from_array(window, self.model.wcs, polarisation_frame=PolarisationFrame('stokesI'))