def test_readwritegaintable(self):
        self.vis = create_blockvisibility(
            self.midcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            polarisation_frame=PolarisationFrame("linear"),
            weight=1.0)
        gt = create_gaintable_from_blockvisibility(self.vis, timeslice='auto')
        gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.1)

        config = {
            "buffer": {
                "directory": self.dir
            },
            "gaintable": {
                "name": "test_buffergaintable.hdf",
                "data_model": "GainTable"
            }
        }
        bdm = BufferGainTable(config["buffer"], config["gaintable"], gt)
        bdm.sync()
        new_bdm = BufferGainTable(config["buffer"], config["gaintable"])
        new_bdm.sync()
        newgt = bdm.memory_data_model

        assert gt.data.shape == newgt.data.shape
        assert numpy.max(numpy.abs(gt.gain - newgt.gain)) < 1e-15
    def test_readwriteskymodel_no_image(self):
        vis = create_blockvisibility(
            self.midcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            polarisation_frame=PolarisationFrame("linear"),
            weight=1.0)
        gt = create_gaintable_from_blockvisibility(vis, timeslice='auto')
        gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.1)
        sm = SkyModel(components=[self.comp], gaintable=gt)

        config = {
            "buffer": {
                "directory": self.dir
            },
            "skymodel": {
                "name": "test_bufferskymodel.hdf",
                "data_model": "SkyModel"
            }
        }
        bdm = BufferSkyModel(config["buffer"], config["skymodel"], sm)
        bdm.sync()
        new_bdm = BufferSkyModel(config["buffer"], config["skymodel"])
        new_bdm.sync()
        newsm = bdm.memory_data_model

        assert newsm.components[0].flux.shape == self.comp.flux.shape
        assert newsm.gaintable.data.shape == gt.data.shape
    def test_readwritepointingtable(self):
        self.vis = create_blockvisibility(
            self.midcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            polarisation_frame=PolarisationFrame("linear"),
            weight=1.0)
        pt = create_pointingtable_from_blockvisibility(self.vis,
                                                       timeslice='auto')
        pt = simulate_pointingtable(pt, pointing_error=0.1)

        config = {
            "buffer": {
                "directory": self.dir
            },
            "pointingtable": {
                "name": "test_bufferpointingtable.hdf",
                "data_model": "PointingTable"
            }
        }
        bdm = BufferPointingTable(config["buffer"], config["pointingtable"],
                                  pt)
        bdm.sync()
        new_bdm = BufferPointingTable(config["buffer"],
                                      config["pointingtable"])
        new_bdm.sync()
        newpt = bdm.memory_data_model

        assert pt.data.shape == newpt.data.shape
        assert numpy.max(numpy.abs(pt.pointing - newpt.pointing)) < 1e-15
    def test_readwriteflagtable(self):
        self.vis = create_blockvisibility(
            self.midcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            polarisation_frame=PolarisationFrame("linear"),
            weight=1.0)
        ft = create_flagtable_from_blockvisibility(self.vis, timeslice='auto')

        config = {
            "buffer": {
                "directory": self.dir
            },
            "flagtable": {
                "name": "test_bufferflagtable.hdf",
                "data_model": "FlagTable"
            }
        }
        bdm = BufferFlagTable(config["buffer"], config["flagtable"], ft)
        bdm.sync()
        new_bdm = BufferFlagTable(config["buffer"], config["flagtable"])
        new_bdm.sync()
        newft = bdm.memory_data_model

        assert ft.data.shape == newft.data.shape
        assert numpy.max(numpy.abs(ft.flags - newft.flags)) < 1e-15
Esempio n. 5
0
 def test_create_flagtable(self):
     bvis = create_blockvisibility(
         self.lowcore,
         self.times,
         self.frequency,
         channel_bandwidth=self.channel_bandwidth,
         phasecentre=self.phasecentre,
         polarisation_frame=self.polarisation_frame,
         weight=1.0)
     ft = create_flagtable_from_blockvisibility(bvis)
     print(ft)
     assert len(ft.data) == len(bvis.data)
Esempio n. 6
0
 def test_create_flagtable_from_rows(self):
     bvis = create_blockvisibility(
         self.lowcore,
         self.times,
         self.frequency,
         channel_bandwidth=self.channel_bandwidth,
         polarisation_frame=self.polarisation_frame,
         phasecentre=self.phasecentre,
         weight=1.0)
     ft = create_flagtable_from_blockvisibility(bvis)
     rows = ft.time > 150.0
     ft = create_flagtable_from_blockvisibility(bvis)
     selected_ft = create_flagtable_from_rows(ft, rows)
     assert len(selected_ft.time) == numpy.sum(numpy.array(rows))
    def test_readwriteblockvisibility(self):
        self.vis = create_blockvisibility(
            self.midcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            polarisation_frame=PolarisationFrame("linear"),
            weight=1.0,
            meta={"RASCIL": 0.0})
        self.vis = dft_skycomponent_visibility(self.vis, self.comp)

        config = {
            "buffer": {
                "directory": self.dir
            },
            "vislist": {
                "name": "test_bufferblockvisibility.hdf",
                "data_model": "BlockVisibility"
            }
        }
        bdm = BufferBlockVisibility(config["buffer"], config["vislist"],
                                    self.vis)
        bdm.sync()
        new_bdm = BufferBlockVisibility(config["buffer"], config["vislist"])
        new_bdm.sync()
        newvis = bdm.memory_data_model

        assert isinstance(newvis, BlockVisibility)
        assert numpy.array_equal(newvis.frequency, self.vis.frequency)
        assert newvis.data.shape == self.vis.data.shape
        assert numpy.max(numpy.abs(self.vis.vis - newvis.vis)) < 1e-15
        assert numpy.max(numpy.abs(self.vis.uvw - newvis.uvw)) < 1e-15
        assert numpy.abs(newvis.configuration.location.x.value -
                         self.vis.configuration.location.x.value) < 1e-15
        assert numpy.abs(newvis.configuration.location.y.value -
                         self.vis.configuration.location.y.value) < 1e-15
        assert numpy.abs(newvis.configuration.location.z.value -
                         self.vis.configuration.location.z.value) < 1e-15
        assert numpy.max(
            numpy.abs(newvis.configuration.xyz -
                      self.vis.configuration.xyz)) < 1e-15
        assert newvis.meta == self.vis.meta
                           equinox='J2000')
    low = create_named_configuration('LOWBD2', rmax=rmax)
    print('Configuration has %d stations' % len(low.data))
    centre = numpy.mean(low.xyz, axis=0)
    distance = numpy.hypot(low.xyz[:, 0] - centre[0],
                           low.xyz[:, 1] - centre[1],
                           low.xyz[:, 2] - centre[2])
    lowouter = low.data[distance > 1000.0][::6]
    lowcore = low.data[distance < 1000.0][::3]
    low.data = numpy.hstack((lowcore, lowouter))

    block_vis = create_blockvisibility(
        low,
        times,
        frequency=frequency,
        channel_bandwidth=channel_bandwidth,
        weight=1.0,
        phasecentre=phasecentre,
        polarisation_frame=PolarisationFrame("stokesI"),
        zerow=True)

    vis = convert_blockvisibility_to_visibility(block_vis)
    advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02)

    cellsize = advice['cellsize']
    vis_slices = advice['vis_slices']
    npixel = advice['npixels2']

    small_model = create_image_from_visibility(block_vis,
                                               npixel=512,
                                               frequency=frequency,
Esempio n. 9
0
    def actualSetup(self, nsources=None, nvoronoi=None):

        # Set up the observation: 10 minutes at transit, with 10s integration.
        # Skip 5/6 points to avoid outstation redundancy

        nfreqwin = 1
        ntimes = 3
        self.rmax = 2500.0
        dec = -40.0 * u.deg
        frequency = [1e8]
        channel_bandwidth = [0.1e8]
        times = numpy.linspace(-10.0, 10.0, ntimes) * numpy.pi / (3600.0 * 12.0)

        phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=dec, frame='icrs', equinox='J2000')
        low = create_named_configuration('LOWBD2', rmax=self.rmax)

        centre = numpy.mean(low.xyz, axis=0)
        distance = numpy.hypot(low.xyz[:, 0] - centre[0],
                               low.xyz[:, 1] - centre[1],
                               low.xyz[:, 2] - centre[2])
        lowouter = low.data[distance > 1000.0][::6]
        lowcore = low.data[distance < 1000.0][::3]
        low.data = numpy.hstack((lowcore, lowouter))

        blockvis = create_blockvisibility(low, times, frequency=frequency, channel_bandwidth=channel_bandwidth,
                                          weight=1.0, phasecentre=phasecentre,
                                          polarisation_frame=PolarisationFrame("stokesI"), zerow=True)

        vis = convert_blockvisibility_to_visibility(blockvis)
        advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02)

        cellsize = advice['cellsize']
        npixel = 512

        small_model = create_image_from_visibility(
            blockvis,
            npixel=512,
            frequency=frequency,
            nchan=nfreqwin,
            cellsize=cellsize,
            phasecentre=phasecentre)

        vis.data['imaging_weight'][...] = vis.data['weight'][...]
        vis = weight_list_serial_workflow([vis], [small_model])[0]
        vis = taper_list_serial_workflow([vis], 3 * cellsize)[0]

        blockvis = convert_visibility_to_blockvisibility(vis)

        # ### Generate the model from the GLEAM catalog, including application of the primary beam.

        beam = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency,
                                            nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre)
        beam = create_low_test_beam(beam, use_local=False)

        flux_limit = 0.5
        original_gleam_components = create_low_test_skycomponents_from_gleam(flux_limit=flux_limit,
                                                                             phasecentre=phasecentre,
                                                                             frequency=frequency,
                                                                             polarisation_frame=PolarisationFrame(
                                                                                 'stokesI'),
                                                                             radius=0.15)

        all_components = apply_beam_to_skycomponent(original_gleam_components, beam)
        all_components = filter_skycomponents_by_flux(all_components, flux_min=flux_limit)
        voronoi_components = filter_skycomponents_by_flux(all_components, flux_min=1.5)

        def max_flux(elem):
            return numpy.max(elem.flux)

        voronoi_components = sorted(voronoi_components, key=max_flux, reverse=True)

        if nsources is not None:
            all_components = [all_components[0]]

        if nvoronoi is not None:
            voronoi_components = [voronoi_components[0]]

        self.screen = import_image_from_fits(rascil_data_path('models/test_mpc_screen.fits'))
        all_gaintables = create_gaintable_from_screen(blockvis, all_components,
                                                      self.screen)

        gleam_skymodel_noniso = [SkyModel(components=[all_components[i]], gaintable=all_gaintables[i])
                                 for i, sm in enumerate(all_components)]

        # ### Now predict the visibility for each skymodel and apply the gaintable for that skymodel,
        # returning a list of visibilities, one for each skymodel. We then sum these to obtain
        # the total predicted visibility. All images and skycomponents in the same skymodel
        # get the same gaintable applied which means that in this case each skycomponent has a separate gaintable.

        self.all_skymodel_noniso_vis = convert_blockvisibility_to_visibility(blockvis)

        ngroup = 8
        future_vis = rsexecute.scatter(self.all_skymodel_noniso_vis)
        chunks = [gleam_skymodel_noniso[i:i + ngroup] for i in range(0, len(gleam_skymodel_noniso), ngroup)]
        for chunk in chunks:
            result = predict_skymodel_list_rsexecute_workflow(future_vis, chunk, context='2d', docal=True)
            work_vis = rsexecute.compute(result, sync=True)
            for w in work_vis:
                self.all_skymodel_noniso_vis.data['vis'] += w.data['vis']
            assert numpy.max(numpy.abs(self.all_skymodel_noniso_vis.data['vis'])) > 0.0

        self.all_skymodel_noniso_blockvis = convert_visibility_to_blockvisibility(self.all_skymodel_noniso_vis)

        # ### Remove weaker of components that are too close (0.02 rad)
        idx, voronoi_components = remove_neighbouring_components(voronoi_components, 0.02)

        model = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency,
                                             nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre)

        # Use the gaintable for the brightest component as the starting gaintable
        all_gaintables[0].gain[...] = numpy.conjugate(all_gaintables[0].gain[...])
        all_gaintables[0].gain[...] = 1.0 + 0.0j
        self.theta_list = initialize_skymodel_voronoi(model, voronoi_components, all_gaintables[0])