Esempio n. 1
0
def read_polygons_from_small_patch(in_shp, in_raster):
    '''read polygons and seperate to touch and not touch image edge groups'''
    print(datetime.now(),
          'reading polygons to touch and not touch image edge group')
    polygons = vector_gpd.read_polygons_gpd(in_shp,
                                            b_fix_invalid_polygon=False)
    img_bound = raster_io.get_image_bound_box(in_raster)
    img_resx, img_resy = raster_io.get_xres_yres_file(in_raster)
    half_res = img_resx / 2.0
    image_edge = vector_gpd.convert_image_bound_to_shapely_polygon(img_bound)

    polygons_buff = [item.buffer(half_res)
                     for item in polygons]  # buffer half pixel
    # polygons_touch_img_edge_index = []
    polygon_no_touch = []
    polygons_touch = []
    for idx, (polybuff, poly) in enumerate(zip(polygons_buff, polygons)):
        if polybuff.within(image_edge):
            polygon_no_touch.append(poly)
        else:
            # polygons_touch_img_edge_index.append(idx)
            polygons_touch.append(poly)

    # return polygons,polygons_touch_img_edge_index
    return polygon_no_touch, polygons_touch
Esempio n. 2
0
def get_tile_min_overlap(raster_file_or_files):
    if isinstance(raster_file_or_files,str):
        io_function.is_file_exist(raster_file_or_files)
        image_tiles = [raster_file_or_files]
    elif isinstance(raster_file_or_files,list):
        image_tiles = raster_file_or_files
    else:
        raise ValueError('unsupport type for %s'%str(raster_file_or_files))

    xres, yres = raster_io.get_xres_yres_file(image_tiles[0])
    tile_min_overlap = abs(xres * yres)
    return tile_min_overlap
Esempio n. 3
0
def get_one_sub_image_label(idx,center_polygon, class_int, polygons_all,class_int_all, bufferSize, img_tile_boxes,image_tile_list):
    '''
    get an sub image and the corresponding labe raster
    :param idx: the polygon index
    :param center_polygon: the polygon in training polygon
    :param class_int: the class number of this polygon
    :param polygons_all: the full set of training polygons, for generating label images
    :param class_int_all: the class number for the full set of training polygons
    :param bufferSize: the buffer area to generate sub-images
    :param img_tile_boxes: the bound boxes of all the image tiles
    :param image_tile_list: the list of image paths
    :return:
    '''

    ############# This function is not working  #############

    # center_polygon corresponds to one polygon in the full set of training polygons, so it is not necessary to check
    # get adjacent polygon
    adj_polygons, adj_polygons_class = get_adjacent_polygons(center_polygon, polygons_all, class_int_all, bufferSize)

    # add the center polygons to adj_polygons
    adj_polygons.extend([center_polygon])
    adj_polygons_class.extend([class_int])
    basic.outputlogMessage('get a sub image covering %d training polygons'%len(adj_polygons))

    # find the images which the center polygon overlap (one or two images)
    img_resx, img_resy = raster_io.get_xres_yres_file(image_tile_list[0])
    img_index = get_overlap_image_index(adj_polygons, img_tile_boxes,min_overlap_area=abs(img_resx*img_resy))
    if len(img_index) < 1:
        basic.outputlogMessage('Warning, %dth polygon and the adjacent ones do not overlap any image tile, please check '
                               '(1) the shape file and raster have the same projection'
                               'and (2) this polygon is in the extent of images'%idx)

    image_list = [image_tile_list[item] for item in img_index]

    # open the raster to get projection, resolution
    # with rasterio.open(image_list[0]) as src:
    #     resX = src.res[0]
    #     resY = src.res[1]
    #     src_profile = src.profile
    src = rasterio.open(image_list[0])
    resX = src.res[0]
    resY = src.res[1]
    src_profile = src.profile

    # rasterize the shapes
    burn_shapes = [(item_shape, item_class_int) for (item_shape, item_class_int) in zip(adj_polygons,adj_polygons_class)]
    burn_boxes = get_bounds_of_polygons(adj_polygons)

    # check weather the extent is too large
    burn_boxes_width = math.ceil((burn_boxes[2]- burn_boxes[0])/resX)
    burn_boxes_height = math.ceil((burn_boxes[3] - burn_boxes[1])/resY)

    if  burn_boxes_width*burn_boxes_height > 10000*10000:
        raise ValueError('error, the polygons want to burn cover a very large area')

    # fill as 255 for region outsize shapes for test purpose
    # set all_touched as True, may good small shape
    # new_transform = (burn_boxes[0], resX, 0, burn_boxes[3], 0, -resY )  # (X_min, resX, 0, Y_max, 0, -resY)  # GDAL-style transforms, have been deprecated after raster 1.0
    # affine.Affine() vs. GDAL-style geotransforms: https://rasterio.readthedocs.io/en/stable/topics/migrating-to-v1.html
    new_transform = (resX ,0, burn_boxes[0] , 0, -resY, burn_boxes[3])  # (resX, 0, X_min, 0, -resY, Y_max)
    out_label = rasterize(burn_shapes, out_shape=(burn_boxes_width,burn_boxes_height), transform=new_transform, fill=0, all_touched=False, dtype=rasterio.uint8)
    print('new_transform', new_transform)
    print('out_label', out_label.shape)


    # test, save to disk
    kwargs = src.meta
    kwargs.update(
        dtype=rasterio.uint8,
        count=1,
        width=burn_boxes_width,
        height = burn_boxes_height,
        transform=new_transform)
    with rasterio.open('test_6_albers.tif', 'w', **kwargs) as dst:
        dst.write_band(1, out_label.astype(rasterio.uint8))

    # mask, get pixels cover by polygons, set all_touched as True
    polygons_json = [mapping(item) for item in adj_polygons]
    out_image, out_transform = mask(src, polygons_json, nodata=0, all_touched=True, crop=True)

    #test: output infomation
    print('out_transform', out_transform)
    print('out_image',out_image.shape)

    # test: save it to disk
    out_meta = src.meta.copy()
    out_meta.update({"driver": "GTiff",
                     "height": out_image.shape[1],
                     "width": out_image.shape[2],
                     "transform": out_transform})   # note that, the saved image have a small offset compared to the original ones (~0.5 pixel)
    save_path = "masked_of_polygon_%d.tif"%(idx+1)
    with rasterio.open(save_path, "w", **out_meta) as dest:
        dest.write(out_image)



    # return image_array, label_array
    return 1, 1
Esempio n. 4
0
def get_sub_image(idx,selected_polygon, image_tile_list, image_tile_bounds, save_path, dstnodata, brectangle ):
    '''
    get a mask image based on a selected polygon, it may cross two image tiles
    :param selected_polygon: selected polygons
    :param image_tile_list: image list
    :param image_tile_bounds: the boxes of images in the list
    :param save_path: save path
    :param brectangle: if brectangle is True, crop the raster using bounds, else, use the polygon
    :return: True is successful, False otherwise
    '''
    img_resx, img_resy = raster_io.get_xres_yres_file(image_tile_list[0])
    # find the images which the center polygon overlap (one or two images)
    img_index = get_overlap_image_index([selected_polygon], image_tile_bounds,min_overlap_area=abs(img_resx*img_resy))
    if len(img_index) < 1:
        basic.outputlogMessage(
            'Warning, %dth polygon do not overlap any image tile, please check ' #and its buffer area
            '(1) the shape file and raster have the same projection'
            ' and (2) this polygon is in the extent of images' % idx)
        return False

    image_list = [image_tile_list[item] for item in img_index]

    # check it cross two or more images
    if len(image_list) == 1:
        # for the case that the polygon only overlap one raster
        with rasterio.open(image_list[0]) as src:
            polygon_json = mapping(selected_polygon)

            # not necessary
            # overlap_win = rasterio.features.geometry_window(src, [polygon_json], pad_x=0, pad_y=0, north_up=True, rotated=False,
            #                               pixel_precision=3)

            if brectangle:
                # polygon_box = selected_polygon.bounds
                polygon_json = mapping(selected_polygon.envelope) #shapely.geometry.Polygon([polygon_box])

            # crop image and saved to disk
            out_image, out_transform = mask(src, [polygon_json], nodata=dstnodata, all_touched=True, crop=True)

            # test: save it to disk
            out_meta = src.meta.copy()
            out_meta.update({"driver": "GTiff",
                             "height": out_image.shape[1],
                             "width": out_image.shape[2],
                             "transform": out_transform,
                             "nodata":dstnodata})  # note that, the saved image have a small offset compared to the original ones (~0.5 pixel)
            with rasterio.open(save_path, "w", **out_meta) as dest:
                dest.write(out_image)
        pass
    else:
        # for the case it overlap more than one raster, need to produce a mosaic
        tmp_saved_files = []

        for k_img,image_path in enumerate(image_list):
            with rasterio.open(image_path) as src:
                polygon_json = mapping(selected_polygon)
                if brectangle:
                    # polygon_box = selected_polygon.bounds
                    polygon_json = mapping(selected_polygon.envelope)  # shapely.geometry.Polygon([polygon_box])

                # crop image and saved to disk
                out_image, out_transform = mask(src, [polygon_json], nodata=dstnodata, all_touched=True, crop=True)
                non_nodata_loc = np.where(out_image != dstnodata)
                if non_nodata_loc[0].size < 1 or np.std(out_image[non_nodata_loc]) < 0.0001:
                    basic.outputlogMessage('out_image is total black or white, ignore, %s: %d' % (save_path, k_img))
                    continue

                tmp_saved = os.path.splitext(save_path)[0] +'_%d'%k_img + os.path.splitext(save_path)[1]
                # test: save it to disk
                out_meta = src.meta.copy()
                out_meta.update({"driver": "GTiff",
                                 "height": out_image.shape[1],
                                 "width": out_image.shape[2],
                                 "transform": out_transform,
                                 "nodata":dstnodata})  # note that, the saved image have a small offset compared to the original ones (~0.5 pixel)
                with rasterio.open(tmp_saved, "w", **out_meta) as dest:
                    dest.write(out_image)
                tmp_saved_files.append(tmp_saved)
        if len(tmp_saved_files) < 1:
            basic.outputlogMessage('Warning, %dth polygon overlap multiple image tiles, but all are black or white, please check ' % idx)
            return False
        elif len(tmp_saved_files) == 1:
            io_function.move_file_to_dst(tmp_saved_files[0],save_path)
            del tmp_saved_files[0]
        else:
            # mosaic files in tmp_saved_files
            mosaic_args_list = ['gdal_merge.py', '-o', save_path,'-n',str(dstnodata),'-a_nodata',str(dstnodata)]
            mosaic_args_list.extend(tmp_saved_files)
            if basic.exec_command_args_list_one_file(mosaic_args_list,save_path) is False:
                raise IOError('error, obtain a mosaic (%s) failed'%save_path)

        # # for test
        # if idx==13:
        #     raise ValueError('for test')

        # remove the tmp files
        for tmp_file in tmp_saved_files:
            io_function.delete_file_or_dir(tmp_file)

    # if it will output a very large image (10000 by 10000 pixels), then raise a error

    return True
Esempio n. 5
0
def zonal_stats_multiRasters(in_shp,
                             raster_file_or_files,
                             tile_min_overlap=None,
                             nodata=None,
                             band=1,
                             stats=None,
                             prefix='',
                             range=None,
                             buffer=None,
                             all_touched=True,
                             process_num=1):
    '''
    zonal statistic based on vectors, along multiple rasters (image tiles)
    Args:
        in_shp: input vector file
        raster_file_or_files: a raster file or multiple rasters
        nodata:
        band: band
        stats: like [mean, std, max, min]
        range: interested values [min, max], None means infinity
        buffer: expand polygon with buffer (meter) before the statistic
        all_touched:
        process_num: process number for calculation

    Returns:

    '''
    io_function.is_file_exist(in_shp)
    if stats is None:
        basic.outputlogMessage('warning, No input stats, set to ["mean"])')
        stats = ['mean']
    stats_backup = stats.copy()
    if 'area' in stats:
        stats.remove('area')
        if 'count' not in stats:
            stats.append('count')

    if isinstance(raster_file_or_files, str):
        io_function.is_file_exist(raster_file_or_files)
        image_tiles = [raster_file_or_files]
    elif isinstance(raster_file_or_files, list):
        image_tiles = raster_file_or_files
    else:
        raise ValueError('unsupport type for %s' % str(raster_file_or_files))

    # check projection (assume we have the same projection), check them outside this function

    # get image box
    img_tile_boxes = [
        raster_io.get_image_bound_box(tile) for tile in image_tiles
    ]
    img_tile_polygons = [
        vector_gpd.convert_image_bound_to_shapely_polygon(box)
        for box in img_tile_boxes
    ]
    polygons = vector_gpd.read_polygons_gpd(in_shp)
    if len(polygons) < 1:
        basic.outputlogMessage('No polygons in %s' % in_shp)
        return False
    # polygons_json = [mapping(item) for item in polygons]  # no need when use new verion of rasterio
    if buffer is not None:
        polygons = [poly.buffer(buffer) for poly in polygons]

    # process polygons one by one polygons and the corresponding image tiles (parallel and save memory)
    # also to avoid error: daemonic processes are not allowed to have children
    if process_num == 1:
        stats_res_list = []
        for idx, polygon in enumerate(polygons):
            out_stats = zonal_stats_one_polygon(
                idx,
                polygon,
                image_tiles,
                img_tile_polygons,
                stats,
                nodata=nodata,
                range=range,
                band=band,
                all_touched=all_touched,
                tile_min_overlap=tile_min_overlap)
            stats_res_list.append(out_stats)

    elif process_num > 1:
        threadpool = Pool(process_num)
        para_list = [(idx, polygon, image_tiles, img_tile_polygons, stats,
                      nodata, range, band, all_touched, tile_min_overlap)
                     for idx, polygon in enumerate(polygons)]
        stats_res_list = threadpool.starmap(zonal_stats_one_polygon, para_list)
        threadpool.close()
    else:
        raise ValueError('Wrong process number: %s ' % str(process_num))

    # save to shapefile
    add_attributes = {}
    new_key_list = [prefix + '_' + key for key in stats_res_list[0].keys()]
    for new_ley in new_key_list:
        add_attributes[new_ley] = []
    for stats_result in stats_res_list:
        for key in stats_result.keys():
            add_attributes[prefix + '_' + key].append(stats_result[key])

    if 'area' in stats_backup:
        dx, dy = raster_io.get_xres_yres_file(image_tiles[0])
        add_attributes[prefix + '_' + 'area'] = [
            count * dx * dy for count in add_attributes[prefix + '_' + 'count']
        ]

        if 'count' not in stats_backup:
            del add_attributes[prefix + '_' + 'count']

    vector_gpd.add_attributes_to_shp(in_shp, add_attributes)

    pass