Esempio n. 1
0
def test_data_window_masked_file():
    with rasterio.open('tests/data/RGB.byte.tif') as src:
        window = windows.get_data_window(src.read(1, masked=True))
        assert window == windows.Window.from_slices((3, 714), (13, 770))

        window = windows.get_data_window(src.read(masked=True))
        assert window == windows.Window.from_slices((3, 714), (13, 770))
Esempio n. 2
0
def test_data_window_nodata(data):
    window = windows.get_data_window(data, nodata=0)
    assert window == windows.Window.from_ranges(*DATA_WINDOW)

    window = windows.get_data_window(np.ones_like(data), nodata=0)
    assert window == windows.Window.from_ranges((0, data.shape[0]),
                                                (0, data.shape[1]))
Esempio n. 3
0
def test_data_window_masked_file():
    with rasterio.open('tests/data/RGB.byte.tif') as src:
        window = windows.get_data_window(src.read(1, masked=True))
        assert window == windows.Window.from_ranges((3, 714), (13, 770))

        window = windows.get_data_window(src.read(masked=True))
        assert window == windows.Window.from_ranges((3, 714), (13, 770))
Esempio n. 4
0
def test_data_window_maskedarray():
    """Get window of masked arr."""
    arr = np.ones((3, 3))
    arr[0, :] = 0
    arr = np.ma.masked_array(arr, arr == 0)
    window = get_data_window(arr)
    assert window == Window.from_slices((1, 3), (0, 3))
Esempio n. 5
0
def test_data_window_maskedarray():
    """Get window of masked arr."""
    arr = np.ones((3, 3))
    arr[0, :] = 0
    arr = np.ma.masked_array(arr, arr == 0)
    window = get_data_window(arr)
    assert window == Window.from_slices((1, 3), (0, 3))
Esempio n. 6
0
def test_data_window_nodata_disjunct():
    data = np.zeros((3, 10, 10), dtype='uint8')
    data[0, :4, 1:4] = 1
    data[1, 2:5, 2:8] = 1
    data[2, 1:6, 1:6] = 1
    window = windows.get_data_window(data, nodata=0)
    assert window == windows.Window.from_slices((0, 6), (1, 8))
Esempio n. 7
0
def test_data_window_nodata_disjunct():
    data = np.zeros((3, 10, 10), dtype='uint8')
    data[0, :4, 1:4] = 1
    data[1, 2:5, 2:8] = 1
    data[2, 1:6, 1:6] = 1
    window = windows.get_data_window(data, nodata=0)
    assert window == windows.Window.from_ranges((0, 6), (1, 8))
Esempio n. 8
0
def test_data_window_unmasked(data, recwarn):
    warnings.simplefilter('always')
    old = get_data_window(data)
    assert len(recwarn) == 1
    assert recwarn.pop(DeprecationWarning)
    new = windows.get_data_window(data)
    assert len(recwarn) == 0
    assert old == new
Esempio n. 9
0
def test_data_window_unmasked(data, recwarn):
    warnings.simplefilter('always')
    old = get_data_window(data)
    assert len(recwarn) == 1
    assert recwarn.pop(DeprecationWarning)
    new = windows.get_data_window(data)
    assert len(recwarn) == 0
    assert old == new
Esempio n. 10
0
def load_from_geotif(src, band, roi=None):
    if roi is None:
        roi = get_data_window(src.read(band, masked=True))

    img = src.read(band, window=roi)
    width = src.width
    height = src.height
    transform = src.transform

    return img, (width, height), transform
def main(cadastre_shp_filepath, agglom_extent_filepath, dst_filepath, dst_res,
         dst_nodata, dst_dtype):
    logger = logging.getLogger(__name__)

    cadastre_gdf = gpd.read_file(cadastre_shp_filepath,
                                 bbox=(WEST, SOUTH, EAST, NORTH))

    # rasterize the cadastre
    cadastre_arr, cadastre_transform = rasterize_cadastre(
        cadastre_gdf, dst_res, dst_nodata, dst_dtype)
    logger.info("rasterized cadastre vector LULC dataset to shape %s",
                str(cadastre_arr.shape))

    # TODO; crop it to the extent
    agglom_extent_geom_nodata = 0
    agglom_extent_geom = gpd.read_file(
        agglom_extent_filepath)['geometry'].iloc[:1]
    agglom_extent_mask = features.rasterize(agglom_extent_geom,
                                            out_shape=cadastre_arr.shape,
                                            fill=agglom_extent_geom_nodata,
                                            transform=cadastre_transform)
    # get window and transform of valid data points, i.e., the computed extent
    extent_window = windows.get_data_window(agglom_extent_mask,
                                            nodata=agglom_extent_geom_nodata)
    extent_transform = windows.transform(extent_window, cadastre_transform)
    dst_arr = np.where(agglom_extent_mask, cadastre_arr,
                       dst_nodata)[windows.window_index(extent_window)]
    # dump it
    with rio.open(
            dst_filepath,
            'w',
            driver='GTiff',
            width=extent_window.width,
            height=extent_window.height,
            count=1,
            crs=CRS,  # cadastre_gdf.crs
            transform=extent_transform,
            dtype=dst_dtype,
            nodata=dst_nodata) as dst:
        dst.write(dst_arr, 1)
    logger.info("dumped rasterized dataset to %s", dst_filepath)
Esempio n. 12
0
def get_data_window(arr, nodata=None):
    warnings.warn("Deprecated; Use rasterio.windows instead",
                  DeprecationWarning)
    return windows.get_data_window(arr, nodata)
Esempio n. 13
0
def test_data_window_masked(data):
    data = np.ma.masked_array(data, data == 0)
    window = windows.get_data_window(data)
    assert window == DATA_WINDOW
Esempio n. 14
0
def test_data_window_masked(data):
    data = np.ma.masked_array(data, data == 0)
    window = windows.get_data_window(data)
    assert window == windows.Window.from_ranges(*DATA_WINDOW)
Esempio n. 15
0
def test_data_window_nodata():
    """Get window of arr with nodata."""
    arr = np.ones((3, 3))
    arr[0, :] = 0
    window = get_data_window(arr, nodata=0)
    assert window == ((1, 3), (0, 3))
Esempio n. 16
0
def test_data_window_unmasked(data):
    window = windows.get_data_window(data)
    assert window == ((0, data.shape[0]), (0, data.shape[1]))
        # if masks are all false for this window, we can skip this step
        if not np.asarray(masks).sum():
            continue

        # stack mask bits and layer_bits along inner dimension so that we have a shape of
        # (height, width, total_bits)
        data_bits = np.dstack(masks + layer_bits)

        # packbits must be in little order to read the whole array properly in JS
        packed = np.squeeze(np.packbits(data_bits, axis=-1, bitorder="little"))

        window_shape = (window.height, window.width)

        # fill remaining bytes up to dtype bytes
        fill = np.zeros(shape=window_shape, dtype="uint8")

        encoded = np.dstack([packed] + ([fill] * (num_bytes - packed.shape[-1])))
        out[window.toslices()] = encoded.view(dtype).reshape(window_shape)

    # determine the window where data are available, and write out a smaller output
    print("Calculating data window...")
    data_window = get_data_window(out, nodata=0)
    out = out[data_window.toslices()]
    transform = blueprint.window_transform(data_window)

    print("Writing GeoTIFF...")
    outfilename = out_dir / f"indicators_{i}.tif"
    write_raster(outfilename, out, transform=transform, crs=blueprint.crs, nodata=0)

    add_overviews(outfilename)
Esempio n. 18
0
def test_data_window_nodata_3d():
    """Get window of 3d arr with nodata."""
    arr = np.ones((3, 3, 3))
    arr[:, 0, :] = 0
    window = get_data_window(arr, nodata=0)
    assert window == Window.from_slices((1, 3), (0, 3))
Esempio n. 19
0
def test_data_window_masked(data):
    data = np.ma.masked_array(data, data == 0)
    window = windows.get_data_window(data)
    assert window == windows.Window.from_slices(*DATA_WINDOW)
Esempio n. 20
0
def test_data_window_novalid():
    """Get window of arr with nodata."""
    arr = np.ones((3, 3))
    arr[:, :] = 0
    window = get_data_window(arr, nodata=0)
    assert window == Window.from_slices((0, 0), (0, 0))
Esempio n. 21
0
def test_data_window_unmasked(data):
    window = windows.get_data_window(data)
    assert window == ((0, data.shape[0]), (0, data.shape[1]))
Esempio n. 22
0
def test_data_window_full():
    """Get window of entirely valid data array."""
    arr = np.ones((3, 3))
    window = get_data_window(arr)
    assert window == Window.from_slices((0, 3), (0, 3))
Esempio n. 23
0
def test_data_window_invalid_arr_dims():
    """An array of more than 3 dimensions is invalid."""
    arr = np.ones((3, 3, 3, 3))
    with pytest.raises(WindowError):
        get_data_window(arr)
Esempio n. 24
0
def stack_and_clip_rasters(raster_files, use_common=True, output_tif=None):
    """Combine multiple single band files into a single multi band raster where one band represents
    one file. The filename will be saved in the bands tag. Optionally a minimum common area mask
    can be applied.

    All input rasters MUST be of the same coordinate system and pixel size.

    Args:
        raster_files (List[str]): list of raster files to process
        use_common (bool):  if true input rasters will be masked to the minimum common data area
        output_tif (str):  output tif name. if omitted will be created in TEMPDIR

    Returns:
        str(): The output tif file
        list(): A list of the band tags. (ie order of allocation to bands)
    """
    # if output_tif doesn't include a path then add tempdir as well as overwriting it
    if output_tif is not None and not os.path.isabs(output_tif):
        output_tif = os.path.join(TEMPDIR, output_tif)

    if output_tif is None or config.get_debug_mode():
        # get a unique name, it will create, open the file and delete after saving the variable
        with NamedTemporaryFile(prefix='{}_'.format(
                inspect.getframeinfo(inspect.currentframe())[2]),
                                suffix='.tif',
                                dir=TEMPDIR) as new_file:
            output_tif = new_file.name
        del new_file

    if not isinstance(raster_files, list):
        raise TypeError('Invalid Type: raster_files should be a list')

    if len(raster_files) == 0:
        raise TypeError('Invalid Type: Empty list of raster files')

    not_exists = [
        my_file for my_file in raster_files if not os.path.exists(my_file)
    ]
    if len(not_exists) > 0:
        raise IOError('raster_files: {} raster file(s) do '
                      'not exist\n\t({})'.format(len(not_exists),
                                                 '\n\t'.join(not_exists)))

    check_pixelsize = []
    check_crs = []

    for ea_raster in raster_files:
        with rasterio.open(ea_raster) as src:
            if src.crs is None:
                check_crs.append(ea_raster)
            if src.res not in check_pixelsize:
                check_pixelsize.append(src.res)

    if len(check_pixelsize) == 1:
        resolution = check_pixelsize[0]
    else:
        raise TypeError(
            "raster_files are of different pixel sizes - {}".format(
                list(set(check_pixelsize))))

    if len(check_crs) > 0:
        raise TypeError("{} raster(s) don't have coordinates "
                        "systems assigned \n\t{}".format(
                            len(check_crs), '\n\t'.join(check_crs)))

    start_time = time.time()
    step_time = time.time()

    # Make sure ALL masks are saved inside the TIFF file not as a sidecar.
    gdal.SetConfigOption('GDAL_TIFF_INTERNAL_MASK', 'YES')

    try:
        # Find minimum overlapping extent of all rasters ------------------------------------
        for i, ea_raster in enumerate(raster_files, start=1):
            with rasterio.open(ea_raster) as src:

                band1 = src.read(1, masked=True)

                # get minimum data extent
                data_window = get_data_window(band1)

                # find the intersection of all the windows
                if i == 1:
                    min_window = data_window
                else:
                    # create a new window using the last coordinates based on this image in case
                    # extents/pixel origins are different
                    min_img_window = from_bounds(*min_bbox,
                                                 transform=src.transform)

                    # find the intersection of the windows.
                    min_window = intersection(
                        min_img_window, data_window).round_lengths('ceil')

                # convert the window co coordinates
                min_bbox = src.window_bounds(min_window)

                del min_window
        if config.get_debug_mode():
            LOGGER.info('{:<30} {:<15} {dur} {}'.format(
                'Found Common Extent',
                '',
                min_bbox,
                dur=timedelta(seconds=time.time() - step_time)))

    except rasterio.errors.WindowError as e:
        # reword 'windows do not intersect' error message
        if not e.args:
            e.args = ('', )
        e.args = ("Rasters (Images) do not overlap", )

        raise  # re-raise current exception

    # Create the metadata for the overlapping extent image. ---------------------------------------
    transform, width, height, bbox = create_raster_transform(
        min_bbox, resolution[0], buffer_by_pixels=5)

    # update the new image metadata ---------------------------------------------------------------
    kwargs = rasterio.open(raster_files[0]).meta.copy()
    kwargs.update({
        'count': len(raster_files),
        'nodata': -9999,
        'height': height,
        'width': width,
        'transform': transform
    })
    ''' combine individual rasters into one multi-band tiff using reproject will 
           fit each raster to the same pixel origin
           will crop to the min bbox
           standardise the nodata values
           apply nodata values to entire image including internal blocks'''

    with rasterio.open(output_tif, 'w', **kwargs) as dst:
        band_list = []
        for i, ea_raster in enumerate(raster_files, start=1):
            image = os.path.basename(os.path.splitext(ea_raster)[0])
            band_list.append(image)

            with rasterio.open(ea_raster) as src:
                reproject(source=rasterio.band(src, 1),
                          destination=rasterio.band(dst, i),
                          src_transform=src.transform,
                          dst_transform=transform,
                          resampling=Resampling.nearest)

            dst.update_tags(i, **{'name': image})

        dst.descriptions = band_list
    if config.get_debug_mode():
        LOGGER.info('{:<30} {:<15} {dur}'.format(
            'Rasters Combined',
            '',
            dur=timedelta(seconds=time.time() - step_time)))

    # find the common data area -------------------------------------------------------
    if use_common:
        with rasterio.open(output_tif, 'r+') as src:
            # find common area across all bands as there maybe internal nodata values in some bands.
            mask = []

            # loop through all all the masks
            for ea_mask in src.read_masks():
                if len(mask) == 0:
                    mask = ea_mask
                else:
                    mask = mask & ea_mask

            # change mask values to  0 = nodata, 1 = valid data
            mask[mask == 255] = 1

            # apply mask to all bands of file
            src.write_mask(mask)

        if config.get_debug_mode():
            # write mask to new file
            tmp_file = os.path.join(
                TEMPDIR, output_tif.replace('.tif', '_commonarea.tif'))

            kwargs_tmp = kwargs.copy()
            kwargs_tmp.update({
                'count': 1,
                'nodata': 0,
                'dtype': rasterio.dtypes.get_minimum_dtype(mask)
            })

            with rasterio.open(tmp_file, 'w', **kwargs_tmp) as tmp_dst:
                tmp_dst.write(mask, 1)

        LOGGER.info('{:<30} {:<15} {dur}'.format(
            'Rasters Combined and clipped',
            '',
            dur=timedelta(seconds=time.time() - start_time)))

    gdal.SetConfigOption('GDAL_TIFF_INTERNAL_MASK', None)

    return output_tif, band_list
Esempio n. 25
0
def test_data_window_nodata():
    """Get window of arr with nodata."""
    arr = np.ones((3, 3))
    arr[0, :] = 0
    window = get_data_window(arr, nodata=0)
    assert window == ((1, 3), (0, 3))
Esempio n. 26
0
    def handle(self, zoneset, variables, clear, *args, **kwargs):
        if zoneset is None or zoneset.strip() == "":
            sources = ZoneSource.objects.all().order_by("name")
            if len(sources) == 0:
                raise CommandError("No zonesets available to analyze")

        else:
            sources = ZoneSource.objects.filter(name__in=zoneset.split(",")).order_by("name")
            if len(sources) == 0:
                raise CommandError("No zonesets available to analyze that match --zones values")

        if variables is None:
            variables = VARIABLES

        else:
            variables = [v for v in variables.split(",") if v in set(VARIABLES)]
            if len(variables) == 0:
                raise CommandError("No variables available to analyze that match --variables values")

        existing_limits = TransferLimit.objects.filter(zone__zone_source__in=[s.id for s in sources])

        if clear:
            message = "WARNING: This will replace ALL transfer limits. Do you want to continue? [y/n]"
            if input(message).lower() not in {"y", "yes"}:
                return

            TransferLimit.objects.all().delete()

        elif existing_limits.exists():
            message = 'WARNING: This will replace "{}" transfer limits. Do you want to continue? [y/n]'.format(
                [s.name for s in sources]
            )
            if input(message).lower() not in {"y", "yes"}:
                return

            existing_limits.delete()

        for time_period in PERIODS:
            self.transfers_by_source = {}

            for source in sources:
                zones = source.seedzone_set.all().order_by("zone_id")

                with ZoneConfig(source.name) as config, ElevationDataset() as elevation_ds, ClimateDatasets(
                    period=time_period, variables=variables
                ) as climate:

                    for zone in Bar(
                        "Processing {} zones for {}".format(source.name, time_period), max=source.seedzone_set.count(),
                    ).iter(zones):
                        regions = get_regions_for_zone(zone)
                        if elevation_ds.region in regions:
                            region = regions.pop(regions.index(elevation_ds.region))
                        else:
                            try:
                                region = regions.pop(0)
                            except IndexError:
                                raise CommandError(
                                    "The following seedzone has no suitable region: {}".format(zone.zone_uid)
                                )

                        while True:
                            elevation_ds.load_region(region.name)
                            climate.load_region(region.name)

                            window, coords = elevation_ds.get_read_window(zone.polygon.extent)
                            transform = coords.affine

                            elevation = elevation_ds.data[window]

                            zone_mask = rasterize(
                                (json.loads(zone.polygon.geojson),),
                                out_shape=elevation.shape,
                                transform=transform,
                                fill=1,  # mask is True OUTSIDE the zone
                                default_value=0,
                                dtype=numpy.dtype("uint8"),
                            ).astype("bool")

                            # if zone_mask is empty (all True), try again with all_touched=True
                            if zone_mask.all():
                                zone_mask = rasterize(
                                    (json.loads(zone.polygon.geojson),),
                                    out_shape=elevation.shape,
                                    transform=transform,
                                    fill=1,  # mask is True OUTSIDE the zone
                                    default_value=0,
                                    dtype=numpy.dtype("uint8"),
                                    all_touched=True,
                                ).astype("bool")

                            if zone_mask.all():
                                break

                            # extract all data not masked out as nodata or outside zone
                            nodata_mask = elevation == elevation_ds.nodata_value
                            mask = nodata_mask | zone_mask

                            # Create a 2D array for extracting to new dataset, in integer feet
                            elevation2d = (
                                numpy.where(~mask, elevation / 0.3048, elevation_ds.nodata_value).round().astype("int")
                            )

                            # Create a 1D array for quantitative analysis, in integer feet
                            elevation = (elevation[~mask] / 0.3048).round().astype("int")

                            if elevation.size == 0 and regions:
                                region = regions.pop(0)
                                continue
                            break

                        # if still note, this is not really a valid zone
                        if zone_mask.all():
                            continue

                        # If there are no pixels in the mask, skip this zone
                        if elevation.size == 0:
                            continue

                        min_elevation = max(math.floor(numpy.nanmin(elevation)), 0)
                        max_elevation = math.ceil(numpy.nanmax(elevation))

                        bands = list(config.get_elevation_bands(zone, min_elevation, max_elevation))

                        if not bands:
                            # min / max elevation outside defined bands
                            continue

                        for band in bands:
                            low, high = band[:2]
                            band_data_mask = (elevation >= low) & (elevation <= high)

                            if not numpy.any(band_data_mask):
                                continue

                            # extract 2D version of elevation within the band
                            band_elevation2d = numpy.where(
                                (elevation2d != elevation_ds.nodata_value)
                                & (elevation2d >= low)
                                & (elevation2d <= high),
                                elevation2d,
                                elevation_ds.nodata_value,
                                )

                            # extract data window for a smaller output dataset
                            band_window = (
                                windows.get_data_window(band_elevation2d, elevation_ds.nodata_value)
                                    .round_offsets(op="floor")
                                    .round_lengths(op="ceil")
                            )

                            if band_window.height > 1 and band_window.width > 1:
                                band_elevation2d = band_elevation2d[band_window.toslices()]
                                band_coords = coords.slice_by_window(Window(*band_window.toslices()))
                            else:
                                # if band is too small, just use the original mask
                                band_coords = coords

                            elevation_service = self._create_elevation_service(
                                zone, band, band_elevation2d, elevation_ds.nodata_value, band_coords,
                            )

                            for variable, ds in climate.items():
                                # extract data with same shape as elevation above
                                data = ds.data[window][~mask]

                                # extract data within elevation range
                                band_data = data[band_data_mask]

                                # then apply variable's nodata mask
                                band_data = band_data[band_data != ds.nodata_value]

                                # no data in band, skip this band
                                if not band_data.size:
                                    continue

                                self._write_limit(
                                    variable, time_period, zone, band_data, band, elevation_service,
                                )

                # Calculate average transfer limit across zones in source
                for variable in variables:
                    transfers = TransferLimit.objects.filter(
                        zone__zone_source=source, variable=variable, time_period=time_period,
                    ).all()

                    avg_transfer = transfers.aggregate(avg_transfer=Avg("transfer"))["avg_transfer"]

                    transfers.update(avg_transfer=avg_transfer)
Esempio n. 27
0
def test_data_window_unmasked(data):
    window = windows.get_data_window(data)
    assert window == windows.Window.from_slices((0, data.shape[0]), (0, data.shape[1]))
Esempio n. 28
0
def get_data_window(arr, nodata=None):
    warnings.warn("Deprecated; Use rasterio.windows instead", DeprecationWarning)
    return windows.get_data_window(arr, nodata)
Esempio n. 29
0
def test_data_window_nodata(data):
    window = windows.get_data_window(data, nodata=0)
    assert window == windows.Window.from_slices(*DATA_WINDOW)

    window = windows.get_data_window(np.ones_like(data), nodata=0)
    assert window == windows.Window.from_slices((0, data.shape[0]), (0, data.shape[1]))
Esempio n. 30
0
def test_data_window_full():
    """Get window of entirely valid data array."""
    arr = np.ones((3, 3))
    window = get_data_window(arr)
    assert window == Window.from_slices((0, 3), (0, 3))
Esempio n. 31
0
def test_data_window_empty_result():
    data = np.zeros((3, 10, 10), dtype='uint8')
    window = windows.get_data_window(data, nodata=0)
    assert window == windows.Window.from_slices((0, 0), (0, 0))
Esempio n. 32
0
def test_data_window_nodata(data):
    window = windows.get_data_window(data, nodata=0)
    assert window == DATA_WINDOW

    window = windows.get_data_window(np.ones_like(data), nodata=0)
    assert window == ((0, data.shape[0]), (0, data.shape[1]))
Esempio n. 33
0
def test_data_window_unmasked(data):
    window = windows.get_data_window(data)
    assert window == windows.Window.from_ranges((0, data.shape[0]),
                                                (0, data.shape[1]))
Esempio n. 34
0
def test_data_window_masked(data):
    data = np.ma.masked_array(data, data == 0)
    window = windows.get_data_window(data)
    assert window == DATA_WINDOW
Esempio n. 35
0
def to_netcdf(
    files,
    output,
    variable,
    dtype,
    src_crs,
    x_name,
    y_name,
    z_name,
    datetime_pattern,
    netcdf3,
    compress,
    packed,
    xy_dtype,
    # z_dtype,
    calendar,
    autocrop):
    """
    Convert rasters to NetCDF and stack them according to a dimension.

    X and Y dimension names will be named according to the source projection (lon, lat if geographic projection, x, y
    otherwise) unless specified.

    Will overwrite an existing NetCDF file.

    Only the first band of the input will be turned into a NetCDF file.
    """

    # TODO: add format string template to this to parse out components

    filenames = list(glob.glob(files))
    if not filenames:
        raise click.BadParameter('No files found matching that pattern', param='files', param_hint='FILES')

    z_values = []

    if datetime_pattern is not None:
        datetimes = (datetime.strptime(x, datetime_pattern) for x in filenames)

        # Sort both datimes and filenames by datetimes
        z_values, filenames = [list(x) for x in zip(*sorted(zip(datetimes, filenames), key=itemgetter(0)))]

    items = tuple(enumerate(filenames))

    has_z = len(filenames) > 1

    if has_z and not z_name:
        raise click.BadParameter('Required when > 1 input file', param='--z', param_hint='--z')

    if src_crs:
        src_crs = CRS.from_string(src_crs)

    template_ds = rasterio.open(filenames[0])
    src_crs = template_ds.crs or src_crs

    if not src_crs:
        raise click.BadParameter('Required when no CRS information available in source files', param='--src-crs',
                                 param_hint='--src-crs')

    prj = Proj(**src_crs.to_dict())
    bounds = template_ds.bounds
    width = template_ds.width
    height = template_ds.height
    window = None

    src_dtype = numpy.dtype(template_ds.dtypes[0])
    dtype = numpy.dtype(dtype) if dtype else src_dtype

    if dtype == src_dtype:
        fill_value = template_ds.nodata
        if src_dtype.kind in ('u', 'i'):
            # nodata always comes from rasterio as floating point
            fill_value = int(fill_value)
    else:
        fill_value = get_fill_value(dtype)

    x_name = x_name or ('lon' if src_crs.is_geographic else 'x')
    y_name = y_name or ('lat' if src_crs.is_geographic else 'y')

    var_kwargs = {
        'fill_value': fill_value
    }

    format = 'NETCDF3_CLASSIC' if netcdf3 else 'NETCDF4'

    with Dataset(output, 'w', format=format) as out:
        if packed or autocrop:
            mins = []
            maxs = []
            windows = []

            click.echo('Inspecting input datasets...')
            with click.progressbar(items) as iter:
                for index, filename in iter:
                    with rasterio.open(filename) as src:
                        data = src.read(1, masked=True)
                        if packed:
                            mins.append(data.min())
                            maxs.append(data.max())
                        if autocrop:
                            data_window = get_data_window(data)
                            if data_window != ((0, height), (0, width)):
                                windows.append(data_window)

            if packed:
                min_value = min(mins)
                max_value = max(maxs)
                scale, offset = get_pack_atts(dtype, min_value, max_value)
            if autocrop and windows:
                window = union(windows)
                bounds = template_ds.window_bounds(window)
                height = window[0][1] - window[0][0]
                width = window[1][1] - window[1][0]

        coords = SpatialCoordinateVariables.from_bbox(BBox(bounds, prj), width, height, xy_dtype)
        coords.add_to_dataset(out, x_name, y_name, zlib=compress)

        var_dimensions = [y_name, x_name]
        shape = list(coords.shape)
        if has_z:
            shape.insert(0, len(filenames))
            out.createDimension(z_name, shape[0])
            var_dimensions.insert(0, z_name)
            if z_values:
                dates = DateVariable(numpy.array(z_values),
                                     units_start_date=z_values[0], calendar=calendar)
                dates.add_to_dataset(out, z_name)


        click.echo('Creating {0}:{1} with shape {2}'.format(output, variable, shape))

        out_var = out.createVariable(variable, dtype, dimensions=var_dimensions,
                                     zlib=compress, **var_kwargs)
        set_crs(out, variable, prj, set_proj4_att=True)

        if packed:
            out_var.setncattr('scale_factor', scale)
            out_var.setncattr('add_offset', offset)



        click.echo('Copying data from input files...')
        with click.progressbar(items) as iter:
            for index, filename in iter:
                with rasterio.open(filename) as src:
                    data = src.read(1, masked=True, window=window)

                    if has_z:
                        out_var[index, :] = data
                    else:
                        out_var[:] = data

                out.sync()
Esempio n. 36
0
def main(mosaic, data, dest, ntl, bbox, country):

    os.makedirs(dest, exist_ok=True)
    os.makedirs(dest + '/pre-event', exist_ok=True)
    os.makedirs(dest + '/post-event', exist_ok=True)

    # create raster mosaic for rasters with same name (~ same area)
    print('creating mosaic of overlapping rasters')
    if mosaic:
        create_raster_mosaic(data, dest)

    # filter pre-event rasters

    print('filtering pre-event rasters')

    # filter by bounding box (if provided)
    if bbox != '':
        bbox_tuple = [float(x) for x in bbox.split(',')]
        bbox = box(bbox_tuple[0], bbox_tuple[1], bbox_tuple[2], bbox_tuple[3])
        geo = gpd.GeoDataFrame({'geometry': bbox},
                               index=[0],
                               crs=from_epsg(4326))
        coords = getFeatures(geo)
        print('filtering on bbox:')
        print(coords)

        # loop over images and filter
        for raster in tqdm(glob.glob(dest + '/pre-event/*.tif')):
            raster = raster.replace('\\', '/')
            raster_or = raster
            out_name = raster.split('.')[0] + '-bbox.tif'
            with rasterio.open(raster) as src:
                print('cropping on bbox')

                try:
                    out_img, out_transform = mask(dataset=src,
                                                  shapes=coords,
                                                  crop=True)
                    out_meta = src.meta.copy()
                    out_meta.update({
                        'height': out_img.shape[1],
                        'width': out_img.shape[2],
                        'transform': out_transform
                    })

                    print('saving', out_name)
                    with rasterio.open(out_name, 'w', **out_meta) as dst:
                        dst.write(out_img)
                except:
                    print('empty raster, discard')

            os.remove(raster_or)

    # filter by nighttime lights

    # load nighttime light mask
    ntl_shapefile = 'input/ntl_mask_extended.shp'
    if ntl:
        # filter mask by country (if provided)
        if country != '':
            country_ntl_shapefile = ntl_shapefile.split(
                '.')[0] + '_' + country.lower() + '.shp'
            if not os.path.exists(country_ntl_shapefile):
                ntl_world = gpd.read_file(ntl_shapefile)
                ntl_world.crs = {'init': 'epsg:4326'}
                ntl_world = ntl_world.to_crs("EPSG:4326")
                world = gpd.read_file(
                    gpd.datasets.get_path('naturalearth_lowres'))
                country_shape = world[world.name == country]
                if country_shape.empty:
                    print('WARNING: country', country, 'not found!!!')
                    print('available countries:')
                    print(world.name.unique())
                    print('proceeding with global mask')
                    country_ntl_shapefile = ntl_shapefile
                else:
                    country_shape = country_shape.reset_index()
                    country_shape.at[0, 'geometry'] = box(
                        *country_shape.at[0, 'geometry'].bounds)
                    country_shape.geometry = country_shape.geometry.scale(
                        xfact=1.1, yfact=1.1)
                    ntl_country = gpd.clip(ntl_world, country_shape)
                    ntl_country.to_file(country_ntl_shapefile)
            with fiona.open(country_ntl_shapefile, "r") as shapefile:
                shapes = [feature["geometry"] for feature in shapefile]
        else:
            with fiona.open(ntl_shapefile, "r") as shapefile:
                shapes = [feature["geometry"] for feature in shapefile]

        # loop over images and filter
        for raster in tqdm(glob.glob(dest + '/pre-event/*.tif')):
            raster = raster.replace('\\', '/')
            raster_or = raster
            out_name = raster.split('.')[0] + '-ntl.tif'
            if 'ntl' in raster:
                continue
            crop_next = True

            print('processing', raster)
            out_name_ntl = raster.split('.')[0] + '-ntl-mask.tif'
            try:
                with rasterio.open(raster) as src:
                    shapes_r = [
                        x for x in shapes
                        if not rasterio.coords.disjoint_bounds(
                            src.bounds, rasterio.features.bounds(x))
                    ]
                    if len(shapes_r) == 0:
                        print('no ntl present, discard')
                        crop_next = False
                    else:
                        print('ntl present, creating mask')
                        out_image, out_transform = rasterio.mask.mask(
                            src, shapes_r, crop=True)
                        out_meta = src.meta

                        out_meta.update({
                            "driver": "GTiff",
                            "height": out_image.shape[1],
                            "width": out_image.shape[2],
                            "transform": out_transform
                        })
                        # save temporary ntl file
                        print('saving mask', out_name_ntl)
                        with rasterio.open(out_name_ntl, "w",
                                           **out_meta) as dst:
                            dst.write(out_image)
                        crop_next = True
                    raster = out_name_ntl
                if crop_next:
                    with rasterio.open(raster) as src:
                        print('cropping nan on', raster)
                        window = get_data_window(src.read(1, masked=True))

                        kwargs = src.meta.copy()
                        kwargs.update({
                            'height':
                            window.height,
                            'width':
                            window.width,
                            'transform':
                            rasterio.windows.transform(window, src.transform)
                        })

                        print('saving', out_name)
                        try:
                            with rasterio.open(out_name, 'w', **kwargs) as dst:
                                dst.write(src.read(window=window))
                        except:
                            print('empty raster, discard')

                    # remove temporary ntl file
                    os.remove(raster)
                    # remove original raster
                    os.remove(raster_or)
            except:
                print('error loading raster, skipping')
Esempio n. 37
0
def test_data_window_empty_result():
    data = np.zeros((3, 10, 10), dtype='uint8')
    window = windows.get_data_window(data, nodata=0)
    assert window == windows.Window.from_ranges((0, 0), (0, 0))
Esempio n. 38
0
def filter_by_ntl(country, ntl_shapefile, dest):
    # filter mask by country (if provided)
    if country != '':
        country_ntl_shapefile = ntl_shapefile.split(
            '.')[0] + '_' + country.lower() + '.shp'
        if not os.path.exists(country_ntl_shapefile):
            ntl_world = gpd.read_file(ntl_shapefile)
            ntl_world.crs = {'init': 'epsg:4326'}
            ntl_world = ntl_world.to_crs("EPSG:4326")
            world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
            country_shape = world[world.name == country]
            if country_shape.empty:
                logger.info(f"WARNING: country {country} not found!!!")
                logger.info('available countries:')
                logger.info(world.name.unique())
                logger.info('proceeding with global mask')
                country_ntl_shapefile = ntl_shapefile
            else:
                country_shape = country_shape.reset_index()
                country_shape.at[0, 'geometry'] = box(
                    *country_shape.at[0, 'geometry'].bounds)
                country_shape.geometry = country_shape.geometry.scale(
                    xfact=1.1, yfact=1.1)
                ntl_country = gpd.clip(ntl_world, country_shape)
                ntl_country.to_file(country_ntl_shapefile)
        with fiona.open(country_ntl_shapefile, "r") as shapefile:
            shapes = [feature["geometry"] for feature in shapefile]
    else:
        with fiona.open(ntl_shapefile, "r") as shapefile:
            shapes = [feature["geometry"] for feature in shapefile]

    # loop over images and filter
    for raster in tqdm(glob.glob(dest + '/pre-event/*.tif')):
        raster = raster.replace('\\', '/')
        raster_or = raster
        out_name = raster.split('.')[0] + '-ntl.tif'
        if 'ntl' in raster:
            continue
        crop_next = True

        logger.info(f'processing {raster}')
        out_name_ntl = raster.split('.')[0] + '-ntl-mask.tif'
        try:
            with rasterio.open(raster) as src:
                shapes_r = [
                    x for x in shapes if not rasterio.coords.disjoint_bounds(
                        src.bounds, rasterio.features.bounds(x))
                ]
                if len(shapes_r) == 0:
                    logger.info('no ntl present, discard')
                    crop_next = False
                else:
                    logger.info('ntl present, creating mask')
                    out_image, out_transform = rasterio.mask.mask(src,
                                                                  shapes_r,
                                                                  crop=True)
                    out_meta = src.meta

                    out_meta.update({
                        "driver": "GTiff",
                        "height": out_image.shape[1],
                        "width": out_image.shape[2],
                        "transform": out_transform
                    })
                    # save temporary ntl file
                    logger.info(f'saving mask {out_name_ntl}')
                    with rasterio.open(out_name_ntl, "w", **out_meta) as dst:
                        dst.write(out_image)
                    crop_next = True
                raster = out_name_ntl
            if crop_next:
                with rasterio.open(raster) as src:
                    logger.info(f'cropping nan on {raster}')
                    window = get_data_window(src.read(1, masked=True))

                    kwargs = src.meta.copy()
                    kwargs.update({
                        'height':
                        window.height,
                        'width':
                        window.width,
                        'transform':
                        rasterio.windows.transform(window, src.transform)
                    })

                    logger.info(f'saving {out_name}')
                    try:
                        with rasterio.open(out_name, 'w', **kwargs) as dst:
                            dst.write(src.read(window=window))
                    except Exception as e:
                        logger.info(f"Exception occurred: {e}.\nDiscarding.")

                # remove temporary ntl file
                os.remove(raster)
                # remove original raster
                os.remove(raster_or)
        except Exception as e:
            logger.info(f"Exception occurred: {e}.\nDiscarding.")
Esempio n. 39
0
def to_netcdf(
        files,
        output,
        variable,
        dtype,
        src_crs,
        x_name,
        y_name,
        z_name,
        datetime_pattern,
        netcdf3,
        compress,
        packed,
        xy_dtype,
        # z_dtype,
        calendar,
        autocrop):
    """
    Convert rasters to NetCDF and stack them according to a dimension.

    X and Y dimension names will be named according to the source projection (lon, lat if geographic projection, x, y
    otherwise) unless specified.

    Will overwrite an existing NetCDF file.

    Only the first band of the input will be turned into a NetCDF file.
    """

    # TODO: add format string template to this to parse out components

    filenames = list(glob.glob(files))
    if not filenames:
        raise click.BadParameter('No files found matching that pattern',
                                 param='files',
                                 param_hint='FILES')

    z_values = []

    if datetime_pattern is not None:
        datetimes = (datetime.strptime(x, datetime_pattern) for x in filenames)

        # Sort both datimes and filenames by datetimes
        z_values, filenames = [
            list(x)
            for x in zip(*sorted(zip(datetimes, filenames), key=itemgetter(0)))
        ]

    items = tuple(enumerate(filenames))

    has_z = len(filenames) > 1

    if has_z and not z_name:
        raise click.BadParameter('Required when > 1 input file',
                                 param='--z',
                                 param_hint='--z')

    if src_crs:
        src_crs = CRS.from_string(src_crs)

    template_ds = rasterio.open(filenames[0])
    src_crs = template_ds.crs or src_crs

    if not src_crs:
        raise click.BadParameter(
            'Required when no CRS information available in source files',
            param='--src-crs',
            param_hint='--src-crs')

    prj = Proj(**src_crs.to_dict())
    bounds = template_ds.bounds
    width = template_ds.width
    height = template_ds.height
    window = None

    src_dtype = numpy.dtype(template_ds.dtypes[0])
    dtype = numpy.dtype(dtype) if dtype else src_dtype

    if dtype == src_dtype:
        fill_value = template_ds.nodata
        if src_dtype.kind in ('u', 'i'):
            # nodata always comes from rasterio as floating point
            fill_value = int(fill_value)
    else:
        fill_value = get_fill_value(dtype)

    x_name = x_name or ('lon' if src_crs.is_geographic else 'x')
    y_name = y_name or ('lat' if src_crs.is_geographic else 'y')

    var_kwargs = {'fill_value': fill_value}

    format = 'NETCDF3_CLASSIC' if netcdf3 else 'NETCDF4'

    with Dataset(output, 'w', format=format) as out:
        if packed or autocrop:
            mins = []
            maxs = []
            windows = []

            click.echo('Inspecting input datasets...')
            with click.progressbar(items) as iter:
                for index, filename in iter:
                    with rasterio.open(filename) as src:
                        data = src.read(1, masked=True)
                        if packed:
                            mins.append(data.min())
                            maxs.append(data.max())
                        if autocrop:
                            data_window = get_data_window(data)
                            if data_window != ((0, height), (0, width)):
                                windows.append(data_window)

            if packed:
                min_value = min(mins)
                max_value = max(maxs)
                scale, offset = get_pack_atts(dtype, min_value, max_value)
            if autocrop and windows:
                window = union(windows)
                bounds = template_ds.window_bounds(window)
                height = window[0][1] - window[0][0]
                width = window[1][1] - window[1][0]

        coords = SpatialCoordinateVariables.from_bbox(BBox(bounds, prj), width,
                                                      height, xy_dtype)
        coords.add_to_dataset(out, x_name, y_name, zlib=compress)

        var_dimensions = [y_name, x_name]
        shape = list(coords.shape)
        if has_z:
            shape.insert(0, len(filenames))
            out.createDimension(z_name, shape[0])
            var_dimensions.insert(0, z_name)
            if z_values:
                dates = DateVariable(numpy.array(z_values),
                                     units_start_date=z_values[0],
                                     calendar=calendar)
                dates.add_to_dataset(out, z_name)

        click.echo('Creating {0}:{1} with shape {2}'.format(
            output, variable, shape))

        out_var = out.createVariable(variable,
                                     dtype,
                                     dimensions=var_dimensions,
                                     zlib=compress,
                                     **var_kwargs)
        set_crs(out, variable, prj, set_proj4_att=True)

        if packed:
            out_var.setncattr('scale_factor', scale)
            out_var.setncattr('add_offset', offset)

        click.echo('Copying data from input files...')
        with click.progressbar(items) as iter:
            for index, filename in iter:
                with rasterio.open(filename) as src:
                    data = src.read(1, masked=True, window=window)

                    if has_z:
                        out_var[index, :] = data
                    else:
                        out_var[:] = data

                out.sync()
Esempio n. 40
0
def test_data_window_nodata(data):
    window = windows.get_data_window(data, nodata=0)
    assert window == DATA_WINDOW

    window = windows.get_data_window(np.ones_like(data), nodata=0)
    assert window == ((0, data.shape[0]), (0, data.shape[1]))
Esempio n. 41
0
def test_data_window_invalid_arr_dims():
    """An array of more than 3 dimensions is invalid."""
    arr = np.ones((3, 3, 3, 3))
    with pytest.raises(WindowError):
        get_data_window(arr)
def main(cadastre_filepath, dst_tif_filepath, dst_shp_filepath, dst_res,
         num_patches, kernel_radius, urban_threshold, buffer_dist, dst_nodata):
    logger = logging.getLogger(__name__)
    logger.info("preparing raster agglomeration LULC from %s",
                cadastre_filepath)

    cadastre_arr, cadastre_transform = utils.rasterize_cadastre(
        cadastre_filepath, dst_res, dst_nodata)
    logger.info("rasterized cadastre vector LULC dataset to shape %s",
                str(cadastre_arr.shape))

    # get the urban extent mask according to the criteria used in the "Atlas
    # of Urban Expansion, The 2016 Edition" by Angel, S. et al.
    uf = ufp.UrbanFootprinter(cadastre_arr,
                              urban_classes=utils.URBAN_CLASSES,
                              res=dst_res)
    urban_mask = uf.compute_footprint_mask(kernel_radius,
                                           urban_threshold,
                                           num_patches=num_patches,
                                           buffer_dist=buffer_dist)
    logger.info(
        "obtained extent of the %d largest urban cluster(s) (%d pixels)",
        num_patches, np.sum(urban_mask))

    # exclude lake
    # TODO: arguments to customize `LULC_WATER_VAL` and `SIEVE_SIZE`
    label_arr = ndi.label(cadastre_arr == utils.LULC_WATER_VAL,
                          ndi.generate_binary_structure(2, 2))[0]
    cluster_label = np.argmax(np.unique(label_arr,
                                        return_counts=True)[1][1:]) + 1
    largest_cluster = np.array(label_arr == cluster_label, dtype=np.uint8)
    urban_mask = features.sieve(
        np.array(urban_mask.astype(bool) & ~largest_cluster.astype(bool),
                 dtype=urban_mask.dtype), SIEVE_SIZE)

    # get window and transform of valid data points, i.e., the computed extent
    extent_window = windows.get_data_window(urban_mask, nodata=0)
    extent_transform = windows.transform(extent_window, cadastre_transform)
    dst_arr = np.where(urban_mask, cadastre_arr,
                       dst_nodata)[windows.window_index(extent_window)]

    # dump it
    # ACHTUNG: use hardcoded CRS string (for the same CRS) to avoid issues
    with rio.open(
            dst_tif_filepath,
            'w',
            driver='GTiff',
            width=extent_window.width,
            height=extent_window.height,
            count=1,
            crs=utils.CRS,  # cadastre_gdf.crs
            transform=extent_transform,
            dtype=np.uint8,
            nodata=dst_nodata) as dst:
        dst.write(dst_arr, 1)
    logger.info("dumped rasterized dataset to %s", dst_tif_filepath)

    if dst_shp_filepath:
        # save the geometry extent

        # get the urban mask geometry
        # urban_mask_geom = uf.compute_footprint_mask_shp(
        #     kernel_radius,
        #     urban_threshold,
        #     largest_patch_only=largest_patch_only,
        #     buffer_dist=buffer_dist,
        #     transform=extent_transform)
        urban_mask_geom = geometry.shape(
            max([(geom, val) for geom, val in features.shapes(
                np.array(dst_arr != dst_nodata, dtype=np.uint8),
                transform=extent_transform) if val == 1],
                key=lambda geom: len(geom[0]['coordinates']))[0])

        # get the window and transform of the lake extent
        lake_mask = features.sieve(largest_cluster, SIEVE_SIZE)
        extent_window = windows.get_data_window(lake_mask, nodata=0)
        extent_transform = windows.transform(extent_window, cadastre_transform)
        lake_mask = lake_mask[windows.window_index(extent_window)]

        # get the lake mask geometry
        lake_mask_geom = geometry.shape(
            max([(geom, val) for geom, val in features.shapes(
                lake_mask, transform=extent_transform) if val == 1],
                key=lambda geom: len(geom[0]['coordinates']))[0])

        # ACHTUNG: use hardcoded CRS string (for the same CRS) to avoid issues
        gpd.GeoSeries([urban_mask_geom, lake_mask_geom],
                      crs=utils.CRS).to_file(dst_shp_filepath)
        logger.info("dumped extent geometry to %s", dst_shp_filepath)
Esempio n. 43
0
def test_data_window_novalid():
    """Get window of arr with nodata."""
    arr = np.ones((3, 3))
    arr[:, :] = 0
    window = get_data_window(arr, nodata=0)
    assert window == Window.from_slices((0, 0), (0, 0))
    def handle(self, output_directory, region_name, zoneset, *args, **kwargs):
        output_directory = output_directory[0]
        region_name = region_name[0]

        if zoneset is None or zoneset.strip() == "":
            sources = ZoneSource.objects.all().order_by("name")
            if len(sources) == 0:
                raise CommandError("No zonesets available")

        else:
            sources = ZoneSource.objects.filter(
                name__in=zoneset.split(",")).order_by("name")
            if len(sources) == 0:
                raise CommandError(
                    "No zonesets available to analyze that match --zones values"
                )

        region = Region.objects.filter(name=region_name)
        if not region.exists():
            raise CommandError(
                "Region {} is not available".format(region_name))

        region = region.first()

        ### Create output directories
        if not os.path.exists(output_directory):
            os.makedirs(output_directory)

        with ElevationDataset() as elevation_ds:
            elevation_ds.load_region(region.name)

            for source in sources:
                all_species = [
                    e["species"]
                    for e in source.seedzone_set.values("species").distinct()
                ]

                for species in all_species:
                    zones = source.seedzone_set.filter(
                        species=species).order_by("zone_id")

                    out_index = 0
                    zone_ids = []
                    zone_input_ids = []
                    out = numpy.empty(shape=elevation_ds.data.shape,
                                      dtype="uint16")
                    out.fill(NODATA)

                    with ZoneConfig(source.name) as config:
                        for zone in Bar(
                                "Processing {} - {} zones".format(
                                    source.name, species),
                                max=source.seedzone_set.count(),
                        ).iter(zones):

                            source_name = zone.source

                            window, coords = elevation_ds.get_read_window(
                                zone.polygon.extent)
                            transform = coords.affine

                            elevation = elevation_ds.data[window]

                            zone_mask = rasterize(
                                (json.loads(zone.polygon.geojson), ),
                                out_shape=elevation.shape,
                                transform=transform,
                                fill=1,  # mask is True OUTSIDE the zone
                                default_value=0,
                                dtype=numpy.dtype("uint8"),
                            ).astype("bool")

                            nodata_mask = elevation == elevation_ds.nodata_value
                            mask = nodata_mask | zone_mask

                            # Create a 2D array for extracting to new dataset, in integer feet
                            elevation = (numpy.where(
                                ~mask, elevation / 0.3048,
                                elevation_ds.nodata_value).round().astype(
                                    "int"))

                            # if there are no pixels in the mask, skip this zone
                            if elevation.size == 0:
                                continue

                            elevation_data = elevation[
                                elevation != elevation_ds.nodata_value]
                            min_elevation = math.floor(
                                numpy.nanmin(elevation_data))
                            max_elevation = math.ceil(
                                numpy.nanmax(elevation_data))

                            bands = list(
                                config.get_elevation_bands(
                                    zone, min_elevation, max_elevation))
                            bands = generate_missing_bands(
                                bands, min_elevation, max_elevation)

                            if not bands:
                                # min / max elevation outside defined bands
                                warnings.warn(
                                    "\nElevation range {} - {} ft outside defined bands\n"
                                    .format(min_elevation, max_elevation))
                                continue

                            for band in bands:
                                low, high = band[:2]
                                band_mask = (elevation >= low) & (elevation <=
                                                                  high)

                                if not numpy.any(band_mask):
                                    continue

                                # extract actual elevation range within the mask as integer feet
                                band_elevation = elevation.flat[
                                    band_mask.flatten()]
                                band_range = [
                                    math.floor(numpy.nanmin(band_elevation)),
                                    math.ceil(numpy.nanmax(band_elevation)),
                                ]

                                # extract 2D version of elevation within the band
                                value = numpy.where(
                                    (~mask) & band_mask,
                                    out_index,
                                    out[window],
                                )

                                if not numpy.any(value == out_index):
                                    continue

                                out[window] = value
                                # zone ids are based on actual elevation range
                                zone_ids.append("{}_{}_{}".format(
                                    zone.zone_uid, *band_range))
                                # zone_input is based on input elevation range
                                zone_input_ids.append("{}_{}_{}".format(
                                    zone.zone_uid, low, high))

                                out_index += 1

                    if out_index > NODATA - 1:
                        raise ValueError(
                            "Too many zone / band combinations for uint16")

                    # Find the data window of the zones
                    data_window = (windows.get_data_window(
                        out, NODATA).round_offsets(op="floor").round_lengths(
                            op="ceil"))
                    out = out[data_window.toslices()]
                    data_coords = elevation_ds.coords.slice_by_window(
                        Window(*data_window.toslices()))

                    filename = os.path.join(
                        output_directory,
                        "{}_{}_zones.nc".format(source_name, species))

                    with Dataset(filename, "w", format="NETCDF4") as ds:
                        # create ID variable
                        ds.createDimension("zone", len(zone_ids))
                        id_var = ds.createVariable("zone",
                                                   str,
                                                   dimensions=("zone", ))
                        id_var[:] = numpy.array(zone_ids)

                        data_coords.add_to_dataset(ds, "longitude", "latitude")
                        data_var = ds.createVariable(
                            "zones",
                            "uint16",
                            dimensions=("latitude", "longitude"),
                            fill_value=NODATA,
                        )
                        data_var[:] = out
                        set_crs(ds, "zones", Proj({"init": "EPSG:4326"}))

                    with open(filename.replace(".nc", ".csv"), "w") as fp:
                        writer = csv.writer(fp)
                        writer.writerow(["value", "zone", "zone_input"])
                        writer.writerows([[i, zone_ids[i], zone_input_ids[i]]
                                          for i in range(len(zone_ids))])
Esempio n. 45
0
def test_data_window_nodata_3d():
    """Get window of 3d arr with nodata."""
    arr = np.ones((3, 3, 3))
    arr[:, 0, :] = 0
    window = get_data_window(arr, nodata=0)
    assert window == Window.from_slices((1, 3), (0, 3))
Esempio n. 46
0
def test_data_window_empty_result():
    data = numpy.zeros((3, 10, 10), dtype='uint8')
    window = windows.get_data_window(data, nodata=0)
    assert window == ((0, 0), (0, 0))