Esempio n. 1
0
def resume_all(include_failed: bool = False) -> Dict[str, ray.ObjectRef]:
    """Resume all resumable workflow jobs.

    This can be used after cluster restart to resume all tasks.

    Args:
        with_failed: Whether to resume FAILED workflows.

    Examples:
        >>> workflow_step = failed_job.step()
        >>> output = workflow_step.run_async(workflow_id="failed_job")
        >>> try:
        >>>     ray.get(output)
        >>> except Exception:
        >>>     print("JobFailed")
        >>> jobs = workflow.list_all()
        >>> assert jobs == [("failed_job", workflow.FAILED)]
        >>> assert workflow.resume_all(
        >>>   include_failed=True).get("failed_job") is not None

    Returns:
        A list of (workflow_id, returned_obj_ref) resumed.
    """
    ensure_ray_initialized()
    return execution.resume_all(include_failed)
Esempio n. 2
0
def get_actor(actor_id: str) -> "VirtualActor":
    """Get an virtual actor.

    Args:
        actor_id: The ID of the actor.

    Returns:
        A virtual actor.
    """
    ensure_ray_initialized()
    return virtual_actor_class.get_actor(actor_id,
                                         storage_base.get_global_storage())
Esempio n. 3
0
def get_status(workflow_id: str) -> WorkflowStatus:
    """Get the status for a given workflow.

    Args:
        workflow_id: The workflow to query.

    Examples:
        >>> workflow_step = trip.step()
        >>> output = workflow_step.run(workflow_id="trip")
        >>> assert workflow.SUCCESSFUL == workflow.get_status("trip")

    Returns:
        The status of that workflow
    """
    ensure_ray_initialized()
    if not isinstance(workflow_id, str):
        raise TypeError("workflow_id has to be a string type.")
    return execution.get_status(workflow_id)
Esempio n. 4
0
def list_all(
    status_filter: Optional[Union[Union[WorkflowStatus, str],
                                  Set[Union[WorkflowStatus, str]]]] = None
) -> List[Tuple[str, WorkflowStatus]]:
    """List all workflows matching a given status filter.

    Args:
        status: If given, only returns workflow with that status. This can
            be a single status or set of statuses. The string form of the
            status is also acceptable, i.e.,
            "RUNNING"/"FAILED"/"SUCCESSFUL"/"CANCELED"/"RESUMABLE".

    Examples:
        >>> workflow_step = long_running_job.step()
        >>> wf = workflow_step.run_async(workflow_id="long_running_job")
        >>> jobs = workflow.list_all()
        >>> assert jobs == [ ("long_running_job", workflow.RUNNING) ]
        >>> ray.get(wf)
        >>> jobs = workflow.list_all({workflow.RUNNING})
        >>> assert jobs == []
        >>> jobs = workflow.list_all(workflow.SUCCESSFUL)
        >>> assert jobs == [ ("long_running_job", workflow.SUCCESSFUL) ]

    Returns:
        A list of tuple with workflow id and workflow status
    """
    ensure_ray_initialized()
    if isinstance(status_filter, str):
        status_filter = set({WorkflowStatus(status_filter)})
    elif isinstance(status_filter, WorkflowStatus):
        status_filter = set({status_filter})
    elif isinstance(status_filter, set):
        if all([isinstance(s, str) for s in status_filter]):
            status_filter = {WorkflowStatus(s) for s in status_filter}
        elif not all([isinstance(s, WorkflowStatus) for s in status_filter]):
            raise TypeError("status_filter contains element which is not"
                            " a type of `WorkflowStatus or str`."
                            f" {status_filter}")
    elif status_filter is None:
        status_filter = set(WorkflowStatus.__members__.keys())
    else:
        raise TypeError(
            "status_filter must be WorkflowStatus or a set of WorkflowStatus.")
    return execution.list_all(status_filter)
Esempio n. 5
0
def cancel(workflow_id: str) -> None:
    """Cancel a workflow.

    Args:
        workflow_id: The workflow to cancel.

    Examples:
        >>> workflow_step = some_job.step()
        >>> output = workflow_step.run_async(workflow_id="some_job")
        >>> workflow.cancel(workflow_id="some_job")
        >>> assert [("some_job", workflow.CANCELED)] == workflow.list_all()

    Returns:
        None
    """
    ensure_ray_initialized()
    if not isinstance(workflow_id, str):
        raise TypeError("workflow_id has to be a string type.")
    return execution.cancel(workflow_id)
Esempio n. 6
0
def resume(workflow_id: str) -> ray.ObjectRef:
    """Resume a workflow.

    Resume a workflow and retrieve its output. If the workflow was incomplete,
    it will be re-executed from its checkpointed outputs. If the workflow was
    complete, returns the result immediately.

    Examples:
        >>> trip = start_trip.step()
        >>> res1 = trip.run_async(workflow_id="trip1")
        >>> res2 = workflow.resume("trip1")
        >>> assert ray.get(res1) == ray.get(res2)

    Args:
        workflow_id: The id of the workflow to resume.

    Returns:
        An object reference that can be used to retrieve the workflow result.
    """
    ensure_ray_initialized()
    return execution.resume(workflow_id)
Esempio n. 7
0
def get_output(workflow_id: str,
               *,
               name: Optional[str] = None) -> ray.ObjectRef:
    """Get the output of a running workflow.

    Args:
        workflow_id: The workflow to get the output of.
        name: If set, fetch the specific step instead of the output of the
            workflow.

    Examples:
        >>> trip = start_trip.options(name="trip").step()
        >>> res1 = trip.run_async(workflow_id="trip1")
        >>> # you could "get_output()" in another machine
        >>> res2 = workflow.get_output("trip1")
        >>> assert ray.get(res1) == ray.get(res2)
        >>> step_output = workflow.get_output("trip1", "trip")
        >>> assert ray.get(step_output) == ray.get(res1)

    Returns:
        An object reference that can be used to retrieve the workflow result.
    """
    ensure_ray_initialized()
    return execution.get_output(workflow_id, name)
Esempio n. 8
0
 def prepare_inputs():
     ensure_ray_initialized()
     return serialization_context.make_workflow_inputs(
         flattened_args)