Esempio n. 1
0
def run(entry_workflow: Workflow,
        workflow_id: Optional[str] = None,
        overwrite: bool = True) -> ray.ObjectRef:
    """Run a workflow asynchronously.

    # TODO(suquark): The current "run" always overwrite existing workflow.
    # We need to fix this later.
    """
    store = get_global_storage()
    assert ray.is_initialized()
    if workflow_id is None:
        # Workflow ID format: {Entry workflow UUID}.{Unix time to nanoseconds}
        workflow_id = f"{entry_workflow.id}.{time.time():.9f}"
    logger.info(f"Workflow job created. [id=\"{workflow_id}\", storage_url="
                f"\"{store.storage_url}\"].")

    # checkpoint the workflow
    ws = workflow_storage.get_workflow_storage(workflow_id)
    commit_step(ws, "", entry_workflow)
    workflow_manager = get_or_create_management_actor()
    ignore_existing = (entry_workflow.data.step_type != StepType.FUNCTION)
    # NOTE: It is important to 'ray.get' the returned output. This
    # ensures caller of 'run()' holds the reference to the workflow
    # result. Otherwise if the actor removes the reference of the
    # workflow output, the caller may fail to resolve the result.
    result: "WorkflowExecutionResult" = ray.get(
        workflow_manager.run_or_resume.remote(workflow_id, ignore_existing))
    if entry_workflow.data.step_type == StepType.FUNCTION:
        return flatten_workflow_output(workflow_id, result.persisted_output)
    else:
        return flatten_workflow_output(workflow_id, result.volatile_output)
Esempio n. 2
0
def run(entry_workflow: Workflow,
        storage: Optional[Union[str, Storage]] = None,
        workflow_id: Optional[str] = None) -> ray.ObjectRef:
    """Run a workflow asynchronously. See "api.run()" for details."""
    if workflow_id is None:
        # Workflow ID format: {Entry workflow UUID}.{Unix time to nanoseconds}
        workflow_id = f"{entry_workflow.id}.{time.time():.9f}"
    if isinstance(storage, str):
        set_global_storage(create_storage(storage))
    elif isinstance(storage, Storage):
        set_global_storage(storage)
    elif storage is not None:
        raise TypeError("'storage' should be None, str, or Storage type.")
    storage_url = get_global_storage().storage_url
    logger.info(f"Workflow job created. [id=\"{workflow_id}\", storage_url="
                f"\"{storage_url}\"].")
    try:
        workflow_context.init_workflow_step_context(workflow_id, storage_url)
        commit_step(entry_workflow)
        try:
            actor = ray.get_actor(MANAGEMENT_ACTOR_NAME)
        except ValueError:
            # the actor does not exist
            actor = WorkflowManagementActor.options(
                name=MANAGEMENT_ACTOR_NAME, lifetime="detached").remote()
        # NOTE: It is important to 'ray.get' the returned output. This
        # ensures caller of 'run()' holds the reference to the workflow
        # result. Otherwise if the actor removes the reference of the
        # workflow output, the caller may fail to resolve the result.
        output = ray.get(actor.run_or_resume.remote(workflow_id, storage_url))
        direct_output = flatten_workflow_output(workflow_id, output)
    finally:
        workflow_context.set_workflow_step_context(None)
    return direct_output
Esempio n. 3
0
def run(entry_workflow: Workflow,
        storage: Optional[Union[str, Storage]] = None,
        workflow_id: Optional[str] = None) -> ray.ObjectRef:
    """Run a workflow asynchronously. See "api.run()" for details."""
    if workflow_id is None:
        # Workflow ID format: {Entry workflow UUID}.{Unix time to nanoseconds}
        workflow_id = f"{entry_workflow.id}.{time.time():.9f}"
    if isinstance(storage, str):
        set_global_storage(create_storage(storage))
    elif isinstance(storage, Storage):
        set_global_storage(storage)
    elif storage is not None:
        raise TypeError("'storage' should be None, str, or Storage type.")
    storage_url = get_global_storage().storage_url
    logger.info(f"Workflow job created. [id=\"{workflow_id}\", storage_url="
                f"\"{storage_url}\"].")
    try:
        workflow_context.init_workflow_step_context(workflow_id, storage_url)
        commit_step(entry_workflow)
        # TODO(suquark): Move this to a detached named actor,
        # so the workflow shares fate with the actor.
        # The current plan is resuming the workflow on the detached named
        # actor. This is extremely simple to implement, but I am not sure
        # of its performance.
        output = recovery.resume_workflow_job(workflow_id,
                                              get_global_storage())
        logger.info(f"Workflow job {workflow_id} started.")
    finally:
        workflow_context.set_workflow_step_context(None)
    return output
Esempio n. 4
0
def run(entry_workflow: Workflow,
        workflow_id: Optional[str] = None) -> ray.ObjectRef:
    """Run a workflow asynchronously.
    """
    store = get_global_storage()
    assert ray.is_initialized()
    if workflow_id is None:
        # Workflow ID format: {Entry workflow UUID}.{Unix time to nanoseconds}
        workflow_id = f"{str(uuid.uuid4())}.{time.time():.9f}"

    logger.info(f"Workflow job created. [id=\"{workflow_id}\", storage_url="
                f"\"{store.storage_url}\"].")

    with workflow_context.workflow_step_context(workflow_id,
                                                store.storage_url):
        # checkpoint the workflow
        ws = workflow_storage.get_workflow_storage(workflow_id)

        wf_exists = True
        try:
            ws.get_entrypoint_step_id()
        except Exception:
            wf_exists = False

        # We only commit for
        #  - virtual actor tasks: it's dynamic tasks, so we always add
        #  - it's a new workflow
        # TODO (yic): follow up with force rerun
        if entry_workflow.data.step_type != StepType.FUNCTION or not wf_exists:
            commit_step(ws, "", entry_workflow, None)
        workflow_manager = get_or_create_management_actor()
        ignore_existing = (entry_workflow.data.step_type != StepType.FUNCTION)
        # NOTE: It is important to 'ray.get' the returned output. This
        # ensures caller of 'run()' holds the reference to the workflow
        # result. Otherwise if the actor removes the reference of the
        # workflow output, the caller may fail to resolve the result.
        result: "WorkflowExecutionResult" = ray.get(
            workflow_manager.run_or_resume.remote(workflow_id,
                                                  ignore_existing))
        if entry_workflow.data.step_type == StepType.FUNCTION:
            return flatten_workflow_output(workflow_id,
                                           result.persisted_output)
        else:
            return flatten_workflow_output(workflow_id, result.volatile_output)
Esempio n. 5
0
def run(entry_workflow: Workflow,
        workflow_id: Optional[str] = None) -> ray.ObjectRef:
    """Run a workflow asynchronously. See "api.run()" for details."""
    store = get_global_storage()
    assert ray.is_initialized()
    if workflow_id is None:
        # Workflow ID format: {Entry workflow UUID}.{Unix time to nanoseconds}
        workflow_id = f"{entry_workflow.id}.{time.time():.9f}"
    logger.info(f"Workflow job created. [id=\"{workflow_id}\", storage_url="
                f"\"{store.storage_url}\"].")

    # checkpoint the workflow
    ws = workflow_storage.WorkflowStorage(workflow_id, store)
    commit_step(ws, "", entry_workflow)
    workflow_manager = get_or_create_management_actor()
    # NOTE: It is important to 'ray.get' the returned output. This
    # ensures caller of 'run()' holds the reference to the workflow
    # result. Otherwise if the actor removes the reference of the
    # workflow output, the caller may fail to resolve the result.
    output = ray.get(workflow_manager.run_or_resume.remote(workflow_id))
    return flatten_workflow_output(workflow_id, output)