Esempio n. 1
0
        "num_gpus": 1,
        "hiddens": [],
        "schedule_max_timesteps": 7500000,
        "timesteps_per_iteration": 4000,
        "exploration_fraction": 0.8,
        "exploration_final_eps": 0.02,
        "lr": 1e-3,
        "model": {
            "custom_model": "parametric",
            "custom_options": {},  # extra options to pass to your model
        }
    })

# Attempt to restore from checkpoint if possible.
if os.path.exists(CHECKPOINT_FILE):
    checkpoint_path = open(CHECKPOINT_FILE).read()
    print("Restoring from checkpoint path", checkpoint_path)
    dqn.restore(checkpoint_path)

# run the new command using the given tracer

# make a report, placing output in the current directory

# Serving and training loop
while True:
    print(pretty_print(dqn.train()))
    checkpoint_path = dqn.save()
    print("Last checkpoint", checkpoint_path)
    with open(CHECKPOINT_FILE, "w") as f:
        f.write(checkpoint_path)
                "timesteps_per_iteration": 200,
                "env_config": {
                    "observation_size": args.observation_size,
                    "action_size": args.action_size,
                },
            })
    elif args.run == "PG":
        agent = PGAgent(
            env="srv",
            config={
                "num_workers": 0,
                "env_config": {
                    "observation_size": args.observation_size,
                    "action_size": args.action_size,
                },
            })

    # Attempt to restore from checkpoint if possible.
    if os.path.exists(args.checkpoint_file):
        checkpoint_file = open(args.checkpoint_file).read()
        print("Restoring from checkpoint path", checkpoint_file)
        agent.restore(checkpoint_file)

    # Serving and training loop
    while True:
        print(pretty_print(agent.train()))
        checkpoint_file = agent.save()
        print("Last checkpoint", checkpoint_file)
        with open(args.checkpoint_file, "w") as f:
            f.write(checkpoint_file)