"num_gpus": 1, "hiddens": [], "schedule_max_timesteps": 7500000, "timesteps_per_iteration": 4000, "exploration_fraction": 0.8, "exploration_final_eps": 0.02, "lr": 1e-3, "model": { "custom_model": "parametric", "custom_options": {}, # extra options to pass to your model } }) # Attempt to restore from checkpoint if possible. if os.path.exists(CHECKPOINT_FILE): checkpoint_path = open(CHECKPOINT_FILE).read() print("Restoring from checkpoint path", checkpoint_path) dqn.restore(checkpoint_path) # run the new command using the given tracer # make a report, placing output in the current directory # Serving and training loop while True: print(pretty_print(dqn.train())) checkpoint_path = dqn.save() print("Last checkpoint", checkpoint_path) with open(CHECKPOINT_FILE, "w") as f: f.write(checkpoint_path)
"timesteps_per_iteration": 200, "env_config": { "observation_size": args.observation_size, "action_size": args.action_size, }, }) elif args.run == "PG": agent = PGAgent( env="srv", config={ "num_workers": 0, "env_config": { "observation_size": args.observation_size, "action_size": args.action_size, }, }) # Attempt to restore from checkpoint if possible. if os.path.exists(args.checkpoint_file): checkpoint_file = open(args.checkpoint_file).read() print("Restoring from checkpoint path", checkpoint_file) agent.restore(checkpoint_file) # Serving and training loop while True: print(pretty_print(agent.train())) checkpoint_file = agent.save() print("Last checkpoint", checkpoint_file) with open(args.checkpoint_file, "w") as f: f.write(checkpoint_file)