def do_test_nested_dict(self, make_env, test_lstm=False):
        ModelCatalog.register_custom_model("composite", DictSpyModel)
        register_env("nested", make_env)
        pg = PGTrainer(
            env="nested",
            config={
                "num_workers": 0,
                "rollout_fragment_length": 5,
                "train_batch_size": 5,
                "model": {
                    "custom_model": "composite",
                    "use_lstm": test_lstm,
                },
                "framework": "tf",
                "disable_env_checking": True,
            },
        )
        # Skip first passes as they came from the TorchPolicy loss
        # initialization.
        DictSpyModel.capture_index = 0
        pg.train()

        # Check that the model sees the correct reconstructed observations
        for i in range(4):
            seen = pickle.loads(
                ray.experimental.internal_kv._internal_kv_get("d_spy_in_{}".format(i))
            )
            pos_i = DICT_SAMPLES[i]["sensors"]["position"].tolist()
            cam_i = DICT_SAMPLES[i]["sensors"]["front_cam"][0].tolist()
            task_i = DICT_SAMPLES[i]["inner_state"]["job_status"]["task"]
            self.assertEqual(seen[0][0].tolist(), pos_i)
            self.assertEqual(seen[1][0].tolist(), cam_i)
            check(seen[2][0], task_i)
    def do_test_nested_tuple(self, make_env):
        ModelCatalog.register_custom_model("composite2", TupleSpyModel)
        register_env("nested2", make_env)
        pg = PGTrainer(
            env="nested2",
            config={
                "num_workers": 0,
                "rollout_fragment_length": 5,
                "train_batch_size": 5,
                "model": {
                    "custom_model": "composite2",
                },
                "framework": "tf",
                "disable_env_checking": True,
            },
        )
        # Skip first passes as they came from the TorchPolicy loss
        # initialization.
        TupleSpyModel.capture_index = 0
        pg.train()

        # Check that the model sees the correct reconstructed observations
        for i in range(4):
            seen = pickle.loads(
                ray.experimental.internal_kv._internal_kv_get("t_spy_in_{}".format(i))
            )
            pos_i = TUPLE_SAMPLES[i][0].tolist()
            cam_i = TUPLE_SAMPLES[i][1][0].tolist()
            task_i = TUPLE_SAMPLES[i][2]
            self.assertEqual(seen[0][0].tolist(), pos_i)
            self.assertEqual(seen[1][0].tolist(), cam_i)
            check(seen[2][0], task_i)
Esempio n. 3
0
    def test_custom_input_procedure(self):
        class CustomJsonReader(JsonReader):
            def __init__(self, ioctx: IOContext):
                super().__init__(ioctx.input_config["input_files"], ioctx)

        def input_creator(ioctx: IOContext) -> InputReader:
            return ShuffledInput(CustomJsonReader(ioctx))

        register_input("custom_input", input_creator)
        test_input_procedure = [
            "custom_input",
            input_creator,
            "ray.rllib.examples.custom_input_api.CustomJsonReader",
        ]
        for input_procedure in test_input_procedure:
            for fw in framework_iterator(frameworks=("torch", "tf")):
                self.write_outputs(self.test_dir, fw)
                agent = PGTrainer(
                    env="CartPole-v0",
                    config={
                        "input": input_procedure,
                        "input_config": {
                            "input_files": self.test_dir + fw
                        },
                        "input_evaluation": [],
                        "framework": fw,
                    },
                )
                result = agent.train()
                self.assertEqual(result["timesteps_total"], 250)
                self.assertTrue(np.isnan(result["episode_reward_mean"]))
Esempio n. 4
0
    def test_local(self):
        cf = DEFAULT_CONFIG.copy()
        cf["model"]["fcnet_hiddens"] = [10]
        cf["num_workers"] = 2

        for _ in framework_iterator(cf):
            agent = PGTrainer(cf, "CartPole-v0")
            print(agent.train())
            agent.stop()
Esempio n. 5
0
 def write_outputs(self, output, fw, output_config=None):
     agent = PGTrainer(
         env="CartPole-v0",
         config={
             "output": output + (fw if output != "logdir" else ""),
             "rollout_fragment_length": 250,
             "framework": fw,
             "output_config": output_config or {},
         },
     )
     agent.train()
     return agent
Esempio n. 6
0
    def test_multi_agent_dict_invalid_sub_values(self):
        config = {"multiagent": {"count_steps_by": "invalid_value"}}
        self.assertRaisesRegex(
            ValueError,
            "config.multiagent.count_steps_by must be",
            lambda: PGTrainer(config, env="CartPole-v0"),
        )

        config = {"multiagent": {"replay_mode": "invalid_value"}}
        self.assertRaisesRegex(
            ValueError,
            "config.multiagent.replay_mode must be",
            lambda: PGTrainer(config, env="CartPole-v0"),
        )
Esempio n. 7
0
 def test_multi_agent_with_flex_agents(self):
     register_env("flex_agents_multi_agent_cartpole",
                  lambda _: FlexAgentsMultiAgent())
     pg = PGTrainer(
         env="flex_agents_multi_agent_cartpole",
         config={
             "num_workers": 0,
             "framework": "tf",
         },
     )
     for i in range(10):
         result = pg.train()
         print("Iteration {}, reward {}, timesteps {}".format(
             i, result["episode_reward_mean"], result["timesteps_total"]))
Esempio n. 8
0
 def test_agent_input_dir(self):
     for fw in framework_iterator(frameworks=("torch", "tf")):
         self.write_outputs(self.test_dir, fw)
         print("WROTE TO: ", self.test_dir)
         agent = PGTrainer(
             env="CartPole-v0",
             config={
                 "input": self.test_dir + fw,
                 "input_evaluation": [],
                 "framework": fw,
             },
         )
         result = agent.train()
         self.assertEqual(result["timesteps_total"], 250)  # read from input
         self.assertTrue(np.isnan(result["episode_reward_mean"]))
Esempio n. 9
0
 def test_agent_input_list(self):
     for fw in framework_iterator(frameworks=("torch", "tf")):
         self.write_outputs(self.test_dir, fw)
         agent = PGTrainer(
             env="CartPole-v0",
             config={
                 "input": glob.glob(self.test_dir + fw + "/*.json"),
                 "input_evaluation": [],
                 "rollout_fragment_length": 99,
                 "framework": fw,
             },
         )
         result = agent.train()
         self.assertEqual(result["timesteps_total"], 250)  # read from input
         self.assertTrue(np.isnan(result["episode_reward_mean"]))
Esempio n. 10
0
 def test_train_cartpole(self):
     register_env("test", lambda _: SimpleServing(gym.make("CartPole-v0")))
     config = {"num_workers": 0}
     for _ in framework_iterator(config, frameworks=("tf", "torch")):
         pg = PGTrainer(env="test", config=config)
         reached = False
         for i in range(80):
             result = pg.train()
             print("Iteration {}, reward {}, timesteps {}".format(
                 i, result["episode_reward_mean"],
                 result["timesteps_total"]))
             if result["episode_reward_mean"] >= 80:
                 reached = True
                 break
         if not reached:
             raise Exception("failed to improve reward")
Esempio n. 11
0
 def test_agent_input_dict(self):
     for fw in framework_iterator():
         self.write_outputs(self.test_dir, fw)
         agent = PGTrainer(
             env="CartPole-v0",
             config={
                 "input": {
                     self.test_dir + fw: 0.1,
                     "sampler": 0.9,
                 },
                 "train_batch_size": 2000,
                 "input_evaluation": [],
                 "framework": fw,
             },
         )
         result = agent.train()
         self.assertTrue(not np.isnan(result["episode_reward_mean"]))
Esempio n. 12
0
 def test_agent_input_eval_sim(self):
     for fw in framework_iterator():
         self.write_outputs(self.test_dir, fw)
         agent = PGTrainer(
             env="CartPole-v0",
             config={
                 "input": self.test_dir + fw,
                 "input_evaluation": ["simulation"],
                 "framework": fw,
             },
         )
         for _ in range(50):
             result = agent.train()
             if not np.isnan(result["episode_reward_mean"]):
                 return  # simulation ok
             time.sleep(0.1)
         assert False, "did not see any simulation results"
Esempio n. 13
0
 def test_train_multi_agent_cartpole_single_policy(self):
     n = 10
     register_env("multi_agent_cartpole",
                  lambda _: MultiAgentCartPole({"num_agents": n}))
     pg = PGTrainer(
         env="multi_agent_cartpole",
         config={
             "num_workers": 0,
             "framework": "tf",
         },
     )
     for i in range(50):
         result = pg.train()
         print("Iteration {}, reward {}, timesteps {}".format(
             i, result["episode_reward_mean"], result["timesteps_total"]))
         if result["episode_reward_mean"] >= 50 * n:
             return
     raise Exception("failed to improve reward")
Esempio n. 14
0
    def test_nested_action_spaces(self):
        config = DEFAULT_CONFIG.copy()
        config["env"] = RandomEnv
        # Write output to check, whether actions are written correctly.
        tmp_dir = os.popen("mktemp -d").read()[:-1]
        if not os.path.exists(tmp_dir):
            # Last resort: Resolve via underlying tempdir (and cut tmp_.
            tmp_dir = ray._private.utils.tempfile.gettempdir() + tmp_dir[4:]
            assert os.path.exists(tmp_dir), f"'{tmp_dir}' not found!"
        config["output"] = tmp_dir
        # Switch off OPE as we don't write action-probs.
        # TODO: We should probably always write those if `output` is given.
        config["input_evaluation"] = []

        # Pretend actions in offline files are already normalized.
        config["actions_in_input_normalized"] = True

        for _ in framework_iterator(config):
            for name, action_space in SPACES.items():
                config["env_config"] = {
                    "action_space": action_space,
                }
                for flatten in [False, True]:
                    print(f"A={action_space} flatten={flatten}")
                    shutil.rmtree(config["output"])
                    config["_disable_action_flattening"] = not flatten
                    trainer = PGTrainer(config)
                    trainer.train()
                    trainer.stop()

                    # Check actions in output file (whether properly flattened
                    # or not).
                    reader = JsonReader(
                        inputs=config["output"],
                        ioctx=trainer.workers.local_worker().io_context,
                    )
                    sample_batch = reader.next()
                    if flatten:
                        assert isinstance(sample_batch["actions"], np.ndarray)
                        assert len(sample_batch["actions"].shape) == 2
                        assert sample_batch["actions"].shape[0] == len(
                            sample_batch)
                    else:
                        tree.assert_same_structure(
                            trainer.get_policy().action_space_struct,
                            sample_batch["actions"],
                        )

                    # Test, whether offline data can be properly read by a
                    # BCTrainer, configured accordingly.
                    config["input"] = config["output"]
                    del config["output"]
                    bc_trainer = BCTrainer(config=config)
                    bc_trainer.train()
                    bc_trainer.stop()
                    config["output"] = tmp_dir
                    config["input"] = "sampler"
Esempio n. 15
0
 def test_multi_agent_dict_bad_policy_ids(self):
     config = {
         "multiagent": {
             "policies": {1, "good_id"},
             "policy_mapping_fn": lambda aid, **kw: "good_id",
         }
     }
     self.assertRaisesRegex(
         KeyError,
         "Policy IDs must always be of type",
         lambda: PGTrainer(config, env="CartPole-v0"),
     )
Esempio n. 16
0
    def test_multi_agent(self):
        register_env("multi_agent_cartpole",
                     lambda _: MultiAgentCartPole({"num_agents": 10}))

        for fw in framework_iterator():
            pg = PGTrainer(
                env="multi_agent_cartpole",
                config={
                    "num_workers": 0,
                    "output": self.test_dir,
                    "multiagent": {
                        "policies": {"policy_1", "policy_2"},
                        "policy_mapping_fn":
                        (lambda aid, **kwargs: random.choice(
                            ["policy_1", "policy_2"])),
                    },
                    "framework": fw,
                },
            )
            pg.train()
            self.assertEqual(len(os.listdir(self.test_dir)), 1)

            pg.stop()
            pg = PGTrainer(
                env="multi_agent_cartpole",
                config={
                    "num_workers": 0,
                    "input": self.test_dir,
                    "input_evaluation": ["simulation"],
                    "train_batch_size": 2000,
                    "multiagent": {
                        "policies": {"policy_1", "policy_2"},
                        "policy_mapping_fn":
                        (lambda aid, **kwargs: random.choice(
                            ["policy_1", "policy_2"])),
                    },
                    "framework": fw,
                },
            )
            for _ in range(50):
                result = pg.train()
                if not np.isnan(result["episode_reward_mean"]):
                    return  # simulation ok
                time.sleep(0.1)
            assert False, "did not see any simulation results"
Esempio n. 17
0
 def test_callbacks(self):
     for fw in framework_iterator(frameworks=("torch", "tf")):
         counts = Counter()
         pg = PGTrainer(
             env="CartPole-v0",
             config={
                 "num_workers": 0,
                 "rollout_fragment_length": 50,
                 "train_batch_size": 50,
                 "callbacks": {
                     "on_episode_start": lambda x: counts.update({"start": 1}),
                     "on_episode_step": lambda x: counts.update({"step": 1}),
                     "on_episode_end": lambda x: counts.update({"end": 1}),
                     "on_sample_end": lambda x: counts.update({"sample": 1}),
                 },
                 "framework": fw,
             },
         )
         pg.train()
         pg.train()
         self.assertGreater(counts["sample"], 0)
         self.assertGreater(counts["start"], 0)
         self.assertGreater(counts["end"], 0)
         self.assertGreater(counts["step"], 0)
         pg.stop()
Esempio n. 18
0
 def test_multi_agent_dict_invalid_subkeys(self):
     config = {
         "multiagent": {
             "wrong_key": 1,
             "policies": {"p0"},
             "policies_to_train": ["p0"],
         }
     }
     self.assertRaisesRegex(
         KeyError,
         "You have invalid keys in your",
         lambda: PGTrainer(config, env="CartPole-v0"),
     )
Esempio n. 19
0
    def test_agent_input_postprocessing_enabled(self):
        for fw in framework_iterator(frameworks=("tf", "torch")):
            self.write_outputs(self.test_dir, fw)

            # Rewrite the files to drop advantages and value_targets for
            # testing
            for path in glob.glob(self.test_dir + fw + "/*.json"):
                out = []
                with open(path) as f:
                    for line in f.readlines():
                        data = json.loads(line)
                        # Data won't contain rewards as these are not included
                        # in the write_outputs run (not needed in the
                        # SampleBatch). Flip out "rewards" for "advantages"
                        # just for testing.
                        data["rewards"] = data["advantages"]
                        del data["advantages"]
                        if "value_targets" in data:
                            del data["value_targets"]
                        out.append(data)
                with open(path, "w") as f:
                    for data in out:
                        f.write(json.dumps(data))

            agent = PGTrainer(
                env="CartPole-v0",
                config={
                    "input": self.test_dir + fw,
                    "input_evaluation": [],
                    "postprocess_inputs": True,  # adds back 'advantages'
                    "framework": fw,
                },
            )

            result = agent.train()
            self.assertEqual(result["timesteps_total"], 250)  # read from input
            self.assertTrue(np.isnan(result["episode_reward_mean"]))
Esempio n. 20
0
 def test_invalid_model2(self):
     ModelCatalog.register_custom_model("invalid2", InvalidModel2)
     self.assertRaisesRegex(
         ValueError,
         "State output is not a list",
         lambda: PGTrainer(
             env="CartPole-v0",
             config={
                 "model": {
                     "custom_model": "invalid2",
                 },
                 "framework": "tf",
             },
         ),
     )
Esempio n. 21
0
 def test_query_evaluators(self):
     register_env("test", lambda _: gym.make("CartPole-v0"))
     for fw in framework_iterator(frameworks=("torch", "tf")):
         pg = PGTrainer(
             env="test",
             config={
                 "num_workers": 2,
                 "rollout_fragment_length": 5,
                 "num_envs_per_worker": 2,
                 "framework": fw,
                 "create_env_on_driver": True,
             },
         )
         results = pg.workers.foreach_worker(lambda ev: ev.rollout_fragment_length)
         results2 = pg.workers.foreach_worker_with_index(
             lambda ev, i: (i, ev.rollout_fragment_length)
         )
         results3 = pg.workers.foreach_worker(
             lambda ev: ev.foreach_env(lambda env: 1)
         )
         self.assertEqual(results, [10, 10, 10])
         self.assertEqual(results2, [(0, 10), (1, 10), (2, 10)])
         self.assertEqual(results3, [[1, 1], [1, 1], [1, 1]])
         pg.stop()
Esempio n. 22
0
 def test_invalid_model(self):
     ModelCatalog.register_custom_model("invalid", InvalidModel)
     self.assertRaisesRegex(
         ValueError,
         "Subclasses of TorchModelV2 must also inherit from nn.Module",
         lambda: PGTrainer(
             env="CartPole-v0",
             config={
                 "model": {
                     "custom_model": "invalid",
                 },
                 "framework": "torch",
             },
         ),
     )
Esempio n. 23
0
 def test_no_step_on_init(self):
     register_env("fail", lambda _: FailOnStepEnv())
     for fw in framework_iterator():
         # We expect this to fail already on Trainer init due
         # to the env sanity check right after env creation (inside
         # RolloutWorker).
         self.assertRaises(
             Exception,
             lambda: PGTrainer(
                 env="fail",
                 config={
                     "num_workers": 2,
                     "framework": fw,
                 },
             ),
         )
Esempio n. 24
0
    def test_train_multi_agent_cartpole_multi_policy(self):
        n = 10
        register_env("multi_agent_cartpole",
                     lambda _: MultiAgentCartPole({"num_agents": n}))

        def gen_policy():
            config = {
                "gamma": random.choice([0.5, 0.8, 0.9, 0.95, 0.99]),
                "n_step": random.choice([1, 2, 3, 4, 5]),
            }
            return PolicySpec(config=config)

        pg = PGTrainer(
            env="multi_agent_cartpole",
            config={
                "num_workers": 0,
                "multiagent": {
                    "policies": {
                        "policy_1": gen_policy(),
                        "policy_2": gen_policy(),
                    },
                    "policy_mapping_fn": lambda aid, **kwargs: "policy_1",
                },
                "framework": "tf",
            },
        )

        # Just check that it runs without crashing
        for i in range(10):
            result = pg.train()
            print("Iteration {}, reward {}, timesteps {}".format(
                i, result["episode_reward_mean"], result["timesteps_total"]))
        self.assertTrue(
            pg.compute_single_action([0, 0, 0, 0], policy_id="policy_1") in
            [0, 1])
        self.assertTrue(
            pg.compute_single_action([0, 0, 0, 0], policy_id="policy_2") in
            [0, 1])
        self.assertRaisesRegex(
            KeyError,
            "not found in PolicyMap",
            lambda: pg.compute_single_action([0, 0, 0, 0],
                                             policy_id="policy_3"),
        )
Esempio n. 25
0
    def test_multi_agent_complex_spaces(self):
        ModelCatalog.register_custom_model("dict_spy", DictSpyModel)
        ModelCatalog.register_custom_model("tuple_spy", TupleSpyModel)
        register_env("nested_ma", lambda _: NestedMultiAgentEnv())
        act_space = spaces.Discrete(2)
        pg = PGTrainer(
            env="nested_ma",
            config={
                "num_workers": 0,
                "rollout_fragment_length": 5,
                "train_batch_size": 5,
                "multiagent": {
                    "policies": {
                        "tuple_policy": (
                            None,
                            TUPLE_SPACE,
                            act_space,
                            {"model": {"custom_model": "tuple_spy"}},
                        ),
                        "dict_policy": (
                            None,
                            DICT_SPACE,
                            act_space,
                            {"model": {"custom_model": "dict_spy"}},
                        ),
                    },
                    "policy_mapping_fn": lambda aid, **kwargs: {
                        "tuple_agent": "tuple_policy",
                        "dict_agent": "dict_policy",
                    }[aid],
                },
                "framework": "tf",
                "disable_env_checking": True,
            },
        )
        # Skip first passes as they came from the TorchPolicy loss
        # initialization.
        TupleSpyModel.capture_index = DictSpyModel.capture_index = 0
        pg.train()

        for i in range(4):
            seen = pickle.loads(
                ray.experimental.internal_kv._internal_kv_get("d_spy_in_{}".format(i))
            )
            pos_i = DICT_SAMPLES[i]["sensors"]["position"].tolist()
            cam_i = DICT_SAMPLES[i]["sensors"]["front_cam"][0].tolist()
            task_i = DICT_SAMPLES[i]["inner_state"]["job_status"]["task"]
            self.assertEqual(seen[0][0].tolist(), pos_i)
            self.assertEqual(seen[1][0].tolist(), cam_i)
            check(seen[2][0], task_i)

        for i in range(4):
            seen = pickle.loads(
                ray.experimental.internal_kv._internal_kv_get("t_spy_in_{}".format(i))
            )
            pos_i = TUPLE_SAMPLES[i][0].tolist()
            cam_i = TUPLE_SAMPLES[i][1][0].tolist()
            task_i = TUPLE_SAMPLES[i][2]
            self.assertEqual(seen[0][0].tolist(), pos_i)
            self.assertEqual(seen[1][0].tolist(), cam_i)
            check(seen[2][0], task_i)
Esempio n. 26
0
    def test_rollout_dict_space(self):
        register_env("nested", lambda _: NestedDictEnv())
        agent = PGTrainer(env="nested", config={"framework": "tf"})
        agent.train()
        path = agent.save()
        agent.stop()

        # Test train works on restore
        agent2 = PGTrainer(env="nested", config={"framework": "tf"})
        agent2.restore(path)
        agent2.train()

        # Test rollout works on restore
        rollout(agent2, "nested", 100)