Esempio n. 1
0
File: index.py Progetto: igodevs/HVI
def test_nn():
    req_data = request.get_json()
    print("--------- 1.load data ------------")
    dataTest = load_data(
        [
        req_data['x1']
        , req_data['x2']
        , req_data['x3']
        , req_data['x4']
        , req_data['x5']
        , req_data['x6']
        , req_data['x7']
        , req_data['x8']
        , req_data['x9']
        , req_data['x10']
        , req_data['x11']
        , req_data['x12']
        , req_data['x13']
        , req_data['x14']
        , req_data['x15']
        , req_data['x16']
        , req_data['x17']
        , req_data['x18']
        , req_data['x19']
        ]
    )
    print("--------- 2.load model ------------")
    center, delta, w = load_model("messidor_center.txt", "messidor_delta.txt", "messidor_weight.txt")
    print("--------- 3.get prediction ------------")
    result = get_predict(dataTest, center, delta, w)
    print('result', result)
    print("--------- 4.save result ------------")
    res = save_predict(result)
    return jsonify({  "res": res })
Esempio n. 2
0
def start_nn():
    print("--------- 1.load data ------------")
    feature, label, n_output = load_data("data.txt")
    print("--------- 2.training ------------")
    center, delta, w = bp_train(feature, label, 20, 5000, 0.008, n_output)
    print("--------- 3.get prediction ------------")
    result = get_predict(feature, center, delta, w)
    # print("result:", (1 - err_rate(label, result)))
    print("--------- 4.save model and result ------------")
    save_model_result(center, delta, w, result)
    return jsonify({"res": "success"})
Esempio n. 3
0
def get_action(state):
    if np.random.uniform(low=0, high=1) < epsilon:
        return np.random.choice(env.action_space.n)
    predict = get_predict(state, center, delta, w)
    return np.argmax(predict)
    steps = 0
    center = mat(np.random.rand(n_hidden, n))
    delta = mat(np.random.rand(1, n_hidden))
    w = mat(np.random.rand(n_hidden, n_output))
    while steps <= 3000:
        env.render()
        #pos, vel = obs[0],obs[1]
        state1 = normalize_state(obs)
        state1 = np.matrix(state1)
        a = get_action(state1)
        #print('action',a)
        obs, reward, terminate, _ = env.step(a)
        total_reward += abs(obs[0] + 0.5)
        state2 = normalize_state(obs)
        state2 = np.matrix(state2)
        predict = get_predict(state2, center, delta, w)
        target[0][a] = (1 - alpha) * target[0][a] + alpha * (
            reward + gamma * np.max(predict))

        center, delta, w, loss = bp_train(state1, np.matrix(target), n_hidden,
                                          1, 0.01, 3, center, delta, w)
        steps += 1
        if terminate:
            print("Finished after: " + str(episode) + " steps" + str(steps))
            print("Cumulated Reward: " + str(total_reward))
            print("Complete!")
            break

#while True:
#env.render()
Esempio n. 5
0
    delta = get_model(file_delta)

    w = get_model(file_w)

    return center, delta, w


def save_predict(pre):
    m = shape(pre)[0]
    result = []
    for i in range(m):
        if (pre[i, 0] < 0.5):
            pre[i, 0] = 0
        else:
            pre[i, 0] = 1
        result.append(str(pre[i, 0]))
    print(result)
    return result


if __name__ == "__main__":
    print("--------- 1.load data ------------")
    dataTest = load_data(x, y)
    print(dataTest)
    print("--------- 2.load model ------------")
    center, delta, w = load_model("messidor_center.txt", "messidor_delta.txt",
                                  "messidor_weight.txt")
    print("--------- 3.get prediction ------------")
    result = get_predict(dataTest, center, delta, w)
    print("--------- 4.save result ------------")
    save_predict(result)