def test_nn(): req_data = request.get_json() print("--------- 1.load data ------------") dataTest = load_data( [ req_data['x1'] , req_data['x2'] , req_data['x3'] , req_data['x4'] , req_data['x5'] , req_data['x6'] , req_data['x7'] , req_data['x8'] , req_data['x9'] , req_data['x10'] , req_data['x11'] , req_data['x12'] , req_data['x13'] , req_data['x14'] , req_data['x15'] , req_data['x16'] , req_data['x17'] , req_data['x18'] , req_data['x19'] ] ) print("--------- 2.load model ------------") center, delta, w = load_model("messidor_center.txt", "messidor_delta.txt", "messidor_weight.txt") print("--------- 3.get prediction ------------") result = get_predict(dataTest, center, delta, w) print('result', result) print("--------- 4.save result ------------") res = save_predict(result) return jsonify({ "res": res })
def start_nn(): print("--------- 1.load data ------------") feature, label, n_output = load_data("data.txt") print("--------- 2.training ------------") center, delta, w = bp_train(feature, label, 20, 5000, 0.008, n_output) print("--------- 3.get prediction ------------") result = get_predict(feature, center, delta, w) # print("result:", (1 - err_rate(label, result))) print("--------- 4.save model and result ------------") save_model_result(center, delta, w, result) return jsonify({"res": "success"})