def __init__(self, executionTime, startPos, startVel, goalPos, cs, numWeights, overlap, use_scaling): self.T = executionTime self.cs = cs self.alpha = 25.0 self.beta = 6.25 self.g = goalPos self.y = startPos self.startPos = startPos self.z = self.T * startVel self.startZ = self.z self.rbf = Rbf(cs, executionTime, numWeights, overlap) self.amplitude = 0 self.use_scaling = use_scaling
def main(): #read dataset and preprocess it dataset = PreProcessing("seeds_dataset.txt", separator='\s+') dataset.normalize() dataset.normalize_class() #divide dataset into training and test sets train, test = training.holdout(0.7, dataset.normalized_dataframe) nn = Rbf(7, 3) nn.train(train, eta=0.5, max_iterations=500) print("RBF:", training.accuracy(nn, test, 3)) mm = Mlp(7, 3, 3) mm.backpropagation(train.values.tolist(), max_iterations=500) print("MLP:", training.accuracy(mm, test, 3))
def __init__(self, executionTime, startPos, startVel, startAcc, goalPos, goalVel, cs, numWeights, overlap, use_vel_scaling): self.T = executionTime self.cs = cs self.alpha = 25.0 self.beta = 6.25 self.g = goalPos self.gd = goalVel self.gdd = 0.0 #has to be 0 self.y = startPos self.y0 = startPos self.yd0 = startVel self.ydd0 = startAcc self.ydd = startAcc self.v = self.T * self.yd0 self.startV = self.v self.fop = Fop(0.0, startPos, startVel, startAcc, executionTime, goalPos, goalVel, self.gdd) self.rbf = Rbf(cs, executionTime, numWeights, overlap) self.amplitude = goalPos - startPos self.amplitude2 = goalVel - startVel self.use_vel_scaling = use_vel_scaling
def __init__(self, executionTime, startPos, startVel, goalPos, cs, numWeights, overlap, use_scaling): self.T = executionTime self.cs = cs self.alpha = 25.0 self.beta = 6.25 self.g = goalPos self.y = startPos self.startPos = startPos self.z = self.T * startVel; self.startZ = self.z self.rbf = Rbf(cs, executionTime, numWeights, overlap) self.amplitude = 0 self.use_scaling = use_scaling
class MuellingDmp: ''' Muelling dmp without amplitude scaling (eta) ''' def __init__(self, executionTime, startPos, startVel, startAcc, goalPos, goalVel, cs, numWeights, overlap, use_vel_scaling): self.T = executionTime self.cs = cs self.alpha = 25.0 self.beta = 6.25 self.g = goalPos self.gd = goalVel self.gdd = 0.0 #has to be 0 self.y = startPos self.y0 = startPos self.yd0 = startVel self.ydd0 = startAcc self.ydd = startAcc self.v = self.T * self.yd0 self.startV = self.v self.fop = Fop(0.0, startPos, startVel, startAcc, executionTime, goalPos, goalVel, self.gdd) self.rbf = Rbf(cs, executionTime, numWeights, overlap) self.amplitude = goalPos - startPos self.amplitude2 = goalVel - startVel self.use_vel_scaling = use_vel_scaling def step(self, dt): z = self.cs.step(dt) t = self.cs.t f = self.rbf.evaluate(z) # eta = (self.g - self.y0) / self.amplitude #eta = exp((self.g - self.y0) - self.amplitude) eta = (self.gd - self.yd0) / self.amplitude2 if self.use_vel_scaling: f *= eta g, gd, gdd = self.fop.eval(t) #moving target vd = ((self.alpha * (self.beta * (g - self.y) + gd * self.T - self.v) + gdd * self.T**2 + f) / self.T) * dt yd = self.v / self.T * dt self.y += yd self.v += vd self.ydd = vd / self.T def imitate(self, times, positions, velocities, accelerations, dt): ''' first position at t=0 and last position at t = executionTime dt = sampling dt ''' fop = Fop(0.0, positions[0], velocities[0], accelerations[0], times[-1], positions[-1], velocities[-1], accelerations[-1]) g, gd, gdd = fop.evalArray(times) references = self.T**2 * accelerations - self.alpha * ( self.beta * (g - positions) + self.T * gd - self.T * velocities) - self.T**2 * gdd phases = self.cs.get_phases(times) weights = np.ndarray(self.rbf.numWeights) for i in range(self.rbf.numWeights): psi = self.rbf.psi(i, phases) psiD = np.diag(psi) weights[i] = np.linalg.inv([[np.dot(phases.T, np.dot(psiD, phases))]]) * np.dot(phases.T, np.dot(psiD, references)) self.rbf.set_weights(weights) self.amplitude = positions[-1] - positions[0] def reset(self, cs, g, T, y0, gd): self.cs = cs self.g = g self.gd = gd self.T = T self.y = y0 self.v = self.startV self.y0 = y0 self.fop = Fop(0.0, self.y0, self.yd0, self.ydd0, self.T, self.g, self.gd, self.gdd) def run(self, dt): ''' runs the whole dmp and returns ([ts], [ys], [yds]) ''' ts = [] ys = [] yds = [] ydds = [] t = 0.0 while t < self.T: ts.append(t) ys.append(self.y) yds.append(self.v / self.T) ydds.append(self.ydd) t += dt self.step(dt) ts.append(t) ys.append(self.y) yds.append(self.v / self.T) ydds.append(self.ydd) return (ts, np.asarray(ys), np.asarray(yds), np.asarray(ydds))
def seed_test(): # Carregando e Normalizando os dados da base de vinhos dataset = PreProcessing("seeds_dataset.txt", separator='\s+') dataset.normalize() dataset.normalize_class() # Atributos a serem variados nos testes n_layers = [1, 2] hidden_layer = [3, [6, 6]] momentums = [0.3, 0.5] max_iterations = [100, 250, 500] etas = [0.3, 0.5] ps = [0.7, 0.9] rbf_accuracy = 0 mlp_accuracy = 0 tests = 0 # Teste for layer in n_layers: for momentum in momentums: for eta in etas: for max_iteration in max_iterations: for p in ps: tests += 1 print("Test number", tests) train, test = training.holdout( p, dataset.normalized_dataframe) print("INPUT NEURONS = 7 HIDDEN NEURONS = " + str(int(6 / layer)) + " OUTPUT NEURONS = 3 HIDDEN LAYER = " + str(layer) + " ETA = " + str(eta) + " MAX ITERATIONS = " + str(max_iteration) + " MOMENTUM = " + str(momentum) + " P = " + str(p)) print() print("RBF") nn = Rbf(7, 3) nn.train(train, eta=0.5, max_iterations=max_iteration) ac = training.accuracy(nn, test, 3) rbf_accuracy += ac print("ACCURACY =", ac) print() print("MLP") example = test.values.tolist() mm = Mlp(7, hidden_layer[layer - 1], 3, n_hidden_layers=layer) mm.backpropagation(train.values.tolist(), eta=eta, max_iterations=max_iteration) ac = training.accuracy(mm, test, n_classes=3) mlp_accuracy += ac print("ACCURACY =", ac) print() print("Rbf:") nn.feed_forward(example[15][:(-1 * 3)]) print(example[15]) print("Result 1") nn.show_class() print() print("Mlp") print(example[15]) nn.feed_forward(example[15][:(-1 * 3)]) print("Result 2") mm.show_class() print() print( "******************************************************//******************************************************" ) print() print(tests, " tests executed. Rbf accuracy:", rbf_accuracy / tests, " Mlp accuracy:", mlp_accuracy / tests)
class MuellingDmp: ''' Muelling dmp without amplitude scaling (eta) ''' def __init__(self, executionTime, startPos, startVel, startAcc, goalPos, goalVel, cs, numWeights, overlap, use_vel_scaling): self.T = executionTime self.cs = cs self.alpha = 25.0 self.beta = 6.25 self.g = goalPos self.gd = goalVel self.gdd = 0.0 #has to be 0 self.y = startPos self.y0 = startPos self.yd0 = startVel self.ydd0 = startAcc self.ydd = startAcc self.v = self.T * self.yd0 self.startV = self.v self.fop = Fop(0.0, startPos, startVel, startAcc, executionTime, goalPos, goalVel, self.gdd) self.rbf = Rbf(cs, executionTime, numWeights, overlap) self.amplitude = goalPos - startPos self.amplitude2 = goalVel - startVel self.use_vel_scaling = use_vel_scaling def step(self, dt): z = self.cs.step(dt) t = self.cs.t f = self.rbf.evaluate(z) # eta = (self.g - self.y0) / self.amplitude #eta = exp((self.g - self.y0) - self.amplitude) eta = (self.gd - self.yd0) / self.amplitude2 if self.use_vel_scaling: f *= eta g, gd, gdd = self.fop.eval(t) #moving target vd = ((self.alpha * (self.beta * (g - self.y) + gd * self.T - self.v) + gdd * self.T**2 + f) / self.T) * dt yd = self.v / self.T * dt self.y += yd self.v += vd self.ydd = vd / self.T def imitate(self, times, positions, velocities, accelerations, dt): ''' first position at t=0 and last position at t = executionTime dt = sampling dt ''' fop = Fop(0.0, positions[0], velocities[0], accelerations[0], times[-1], positions[-1], velocities[-1], accelerations[-1]) g, gd, gdd = fop.evalArray(times) references = self.T**2 * accelerations - self.alpha * ( self.beta * (g - positions) + self.T * gd - self.T * velocities) - self.T**2 * gdd phases = self.cs.get_phases(times) weights = np.ndarray(self.rbf.numWeights) for i in range(self.rbf.numWeights): psi = self.rbf.psi(i, phases) psiD = np.diag(psi) weights[i] = np.linalg.inv([[ np.dot(phases.T, np.dot(psiD, phases)) ]]) * np.dot(phases.T, np.dot(psiD, references)) self.rbf.set_weights(weights) self.amplitude = positions[-1] - positions[0] def reset(self, cs, g, T, y0, gd): self.cs = cs self.g = g self.gd = gd self.T = T self.y = y0 self.v = self.startV self.y0 = y0 self.fop = Fop(0.0, self.y0, self.yd0, self.ydd0, self.T, self.g, self.gd, self.gdd) def run(self, dt): ''' runs the whole dmp and returns ([ts], [ys], [yds]) ''' ts = [] ys = [] yds = [] ydds = [] t = 0.0 while t < self.T: ts.append(t) ys.append(self.y) yds.append(self.v / self.T) ydds.append(self.ydd) t += dt self.step(dt) ts.append(t) ys.append(self.y) yds.append(self.v / self.T) ydds.append(self.ydd) return (ts, np.asarray(ys), np.asarray(yds), np.asarray(ydds))
class DmpWithImitation: ''' A simple Ijspeert dmp with forcing term ''' def __init__(self, executionTime, startPos, startVel, goalPos, cs, numWeights, overlap, use_scaling): self.T = executionTime self.cs = cs self.alpha = 25.0 self.beta = 6.25 self.g = goalPos self.y = startPos self.startPos = startPos self.z = self.T * startVel self.startZ = self.z self.rbf = Rbf(cs, executionTime, numWeights, overlap) self.amplitude = 0 self.use_scaling = use_scaling def step(self, dt): z = self.cs.step(dt) f = self.rbf.evaluate(z) if self.use_scaling: f *= (self.g - self.startPos) / self.amplitude zd = ((self.alpha * (self.beta * (self.g - self.y) - self.z) + f) / self.T) * dt yd = self.z / self.T * dt self.y += yd self.z += zd def imitate(self, times, positions, dt): ''' first position at t=0 and last position at t = executionTime dt = sampling dt ''' self.amplitude = positions[-1] - positions[0] velocities = np.gradient(positions, dt) accelerations = np.gradient(velocities, dt) goal = positions[len(positions) - 1] references = self.T**2 * accelerations - self.alpha * ( self.beta * (goal - positions) - self.T * velocities) phases = self.cs.get_phases(times) weights = np.ndarray(self.rbf.numWeights) for i in range(self.rbf.numWeights): psi = self.rbf.psi(i, phases) psiD = np.diag(psi) weights[i] = np.linalg.inv([[ np.dot(phases.T, np.dot(psiD, phases)) ]]) * np.dot(phases.T, np.dot(psiD, references)) self.rbf.set_weights(weights) def run(self, dt, startTime=0.0, endTime=None): ''' runs the whole dmp and returns ([ts], [ys], [yds]) ''' ts = [] ys = [] yds = [] t = startTime if endTime is None: endTime = self.T while t < endTime: ts.append(t) ys.append(self.y) yds.append(self.z / self.T) t += dt self.step(dt) #ts.append(t) #ys.append(self.y) #yds.append(self.z / self.T) return (ts, ys, yds) def reset(self, cs, goal, executionTime, start): self.cs = cs self.g = goal self.T = executionTime self.y = start self.z = self.startZ
class DmpWithImitation: ''' A simple Ijspeert dmp with forcing term ''' def __init__(self, executionTime, startPos, startVel, goalPos, cs, numWeights, overlap, use_scaling): self.T = executionTime self.cs = cs self.alpha = 25.0 self.beta = 6.25 self.g = goalPos self.y = startPos self.startPos = startPos self.z = self.T * startVel; self.startZ = self.z self.rbf = Rbf(cs, executionTime, numWeights, overlap) self.amplitude = 0 self.use_scaling = use_scaling def step(self, dt): z = self.cs.step(dt) f = self.rbf.evaluate(z) if self.use_scaling: f *= (self.g - self.startPos) / self.amplitude zd = ((self.alpha * (self.beta * (self.g - self.y)- self.z) + f) / self.T) * dt yd = self.z / self.T * dt self.y += yd self.z += zd def imitate(self, times, positions, dt): ''' first position at t=0 and last position at t = executionTime dt = sampling dt ''' self.amplitude = positions[-1] - positions[0] velocities = np.gradient(positions, dt) accelerations = np.gradient(velocities, dt) goal = positions[len(positions) - 1] references = self.T**2 * accelerations - self.alpha * (self.beta * (goal - positions) - self.T * velocities) phases = self.cs.get_phases(times) weights = np.ndarray(self.rbf.numWeights) for i in range(self.rbf.numWeights): psi = self.rbf.psi(i, phases) psiD = np.diag(psi) weights[i] = np.linalg.inv([[np.dot(phases.T, np.dot(psiD, phases))]]) * np.dot(phases.T, np.dot(psiD, references)) self.rbf.set_weights(weights) def run(self, dt, startTime = 0.0, endTime = None): ''' runs the whole dmp and returns ([ts], [ys], [yds]) ''' ts = [] ys = [] yds = [] t = startTime if endTime is None: endTime = self.T while t < endTime: ts.append(t) ys.append(self.y) yds.append(self.z / self.T) t += dt self.step(dt) #ts.append(t) #ys.append(self.y) #yds.append(self.z / self.T) return (ts, ys, yds) def reset(self, cs, goal, executionTime, start): self.cs = cs self.g = goal self.T = executionTime self.y = start self.z = self.startZ