Esempio n. 1
0
def trainRBM(data, n_components, n_iter, batch_size, learning_rate=0.01):
    acc = []
    err = np.zeros((n_iter, 2))

    rbm = BernoulliRBM(verbose=True,
                       batch_size=batch_size,
                       random_state=1,
                       n_components=n_components)

    n_features = len(data['X'][0])
    rbm.learning_rate = learning_rate

    #initialize the weight matrix with small (normally distributed) random values with hidden and visible biases initialized to 0.
    rbm.components = np.random.randn(n_components, n_features) * 0.1
    rbm.intercept_hidden_ = np.zeros((n_components, ))
    rbm.intercept_visible_ = np.zeros((n_features, ))

    rbm.n_iter = 1
    for i in range(n_iter):
        rbm.fit(data['X'])
        test = rbm.gibbs(data['X'])
        train = rbm.gibbs(data['X'])
        err[i, 1] = np.sum(
            (test - data['X'])**2) / (n_features * len(data['X']))
        err[i, 0] = np.sum(
            (train - data['X'])**2) / (n_features * len(data['X']))

    return rbm, err
Esempio n. 2
0
# Models we will use
logistic = linear_model.LogisticRegression(solver='newton-cg', tol=1)
rbm = BernoulliRBM(Saver(), random_state=0, verbose=True)

rbm_features_classifier = Pipeline(steps=[('rbm', rbm), ('logistic',
                                                         logistic)])

# #############################################################################
# Training

# Hyper-parameters. These were set by cross-validation,
# using a GridSearchCV. Here we are not performing cross-validation to
# save time.
rbm.learning_rate = 0.06
rbm.n_iter = 10
# More components tend to give better prediction performance, but larger
# fitting time
rbm.n_components = 100
logistic.C = 6000

# Training RBM-Logistic Pipeline
rbm_features_classifier.fit(X_train, Y_train)

# Training the Logistic regression classifier directly on the pixel
raw_pixel_classifier = clone(logistic)
raw_pixel_classifier.C = 100.
raw_pixel_classifier.fit(X_train, Y_train)

# #############################################################################
# Evaluation
Esempio n. 3
0
def assignment4_2_DBN():
    data = loadAll()
    n_iter = 75
    n_iter_mlp = 50

    nodes = []  #[150, 100] #, 50]
    no_of_layers = len(nodes)

    learning_rate = 0.01

    batch_size = 200

    train = data['X']
    test_img = data['plot_ims']
    rbms = []
    pipe = []
    acc = []

    prev_layer_size = len(train[0])

    for i in range(no_of_layers):

        rbm = BernoulliRBM(n_components=nodes[i],
                           verbose=True,
                           batch_size=batch_size,
                           random_state=1)
        rbm.learning_rate = learning_rate
        n_features = len(train[0])
        rbm.components = np.random.randn(nodes[i], prev_layer_size) * 0.1
        rbm.intercept_hidden_ = np.zeros((nodes[i], ))
        rbm.intercept_visible_ = np.zeros((prev_layer_size, ))
        rbm.n_iter = n_iter

        #train = rbm.fit_transform(train)  # Enable to start pre-training

        rbms.append(rbm)
        pipe.append(('rbm{}'.format(i), rbm))

        prev_layer_size = nodes[i]

    mlp = MLPClassifier(
        solver='sgd',
        random_state=1,
        learning_rate="adaptive",
        learning_rate_init=0.01,
        hidden_layer_sizes=(784, 10),  #(nodes[no_of_layers-1], 10),
        max_iter=n_iter_mlp,
        verbose=True)

    #print(pipe)
    pipe.append(('mlp', mlp))
    print(pipe)

    clsf = Pipeline(pipe)

    clsf.fit(data['X'], np.ravel(data['T_trn']))

    predicted_classes = clsf.predict(data['X_tst'])

    acc.append(
        np.sum(data['T_tst'].T == predicted_classes) / len(data['T_tst']) *
        100)

    print(acc)

    joblib.dump(clsf, 'dbn_{}l.pkl'.format(no_of_layers))