Esempio n. 1
0
 def solve(self, mu, c, snapshot):
     print("Performing L^2 projection for mu =", mu, "and component", c)
     #quit()
     projected_snapshot_N = OnlineFunction(self.N)
     solver = OnlineLinearSolver(
         self.inner_product_N, projected_snapshot_N,
         transpose(self.basis_functions) * self.inner_product * snapshot)
     solver.solve()
     return projected_snapshot_N.vector().__array__()
Esempio n. 2
0
def reduced_solve(mu, N):
    normalize_inputs = NormalizeInputs(mu_range)
    mu_torch = normalize_inputs(mu)

    mu_torch = mu_torch.view(mu_torch.shape[1], -1)

    reduced_solution = dict()
    for c in components:
        network = Network(len(mu), c, N)
        network.load_state_dict(
            torch.load(os.path.join("networks",
                                    "network_" + c + "_" + str(N))))

        normalize_outputs = NormalizeOutputs(
            os.path.join("networks",
                         "output_normalization_" + c + "_" + str(N)))

        reduced_solution_c = OnlineFunction(N)
        reduced_solution_c.vector()[:] = normalize_outputs.inv(
            network(mu_torch).detach().numpy()[0])
        reduced_solution[c] = reduced_solution_c
    return reduced_solution
Esempio n. 3
0
 def assemble_operator(self, term, current_stage="online"):
     if term == "projection_truth_snapshots":
         assert current_stage in (
             "online", "offline_rectification_postprocessing")
         if current_stage == "online":  # load from file
             self.operator["projection_truth_snapshots"].load(
                 self.folder["reduced_operators"],
                 "projection_truth_snapshots")
             return self.operator["projection_truth_snapshots"]
         elif current_stage == "offline_rectification_postprocessing":
             assert len(
                 self.truth_problem.inner_product
             ) == 1  # the affine expansion storage contains only the inner product matrix
             inner_product = self.truth_problem.inner_product[0]
             for n in range(1, self.N + 1):
                 assert len(
                     self.inner_product
                 ) == 1  # the affine expansion storage contains only the inner product matrix
                 inner_product_n = self.inner_product[:n, :n][0]
                 basis_functions_n = self.basis_functions[:n]
                 projection_truth_snapshots_expansion = OnlineAffineExpansionStorage(
                     1)
                 projection_truth_snapshots = OnlineMatrix(n, n)
                 for (i, snapshot_i) in enumerate(self.snapshots[:n]):
                     projected_truth_snapshot_i = OnlineFunction(n)
                     solver = LinearSolver(
                         inner_product_n, projected_truth_snapshot_i,
                         transpose(basis_functions_n) * inner_product *
                         snapshot_i)
                     solver.set_parameters(
                         self._linear_solver_parameters)
                     solver.solve()
                     for j in range(n):
                         projection_truth_snapshots[
                             j,
                             i] = projected_truth_snapshot_i.vector()[j]
                 projection_truth_snapshots_expansion[
                     0] = projection_truth_snapshots
                 print("\tcondition number for n = " + str(n) + ": " +
                       str(cond(projection_truth_snapshots)))
                 self.operator[
                     "projection_truth_snapshots"][:n, :
                                                   n] = projection_truth_snapshots_expansion
             # Save
             self.operator["projection_truth_snapshots"].save(
                 self.folder["reduced_operators"],
                 "projection_truth_snapshots")
             return self.operator["projection_truth_snapshots"]
         else:
             raise ValueError("Invalid stage in assemble_operator().")
     elif term == "projection_reduced_snapshots":
         assert current_stage in (
             "online", "offline_rectification_postprocessing")
         if current_stage == "online":  # load from file
             self.operator["projection_reduced_snapshots"].load(
                 self.folder["reduced_operators"],
                 "projection_reduced_snapshots")
             return self.operator["projection_reduced_snapshots"]
         elif current_stage == "offline_rectification_postprocessing":
             # Backup mu
             bak_mu = self.mu
             # Prepare rectification for all possible online solve arguments
             for n in range(1, self.N + 1):
                 print("\tcondition number for n = " + str(n))
                 projection_reduced_snapshots_expansion = OnlineAffineExpansionStorage(
                     len(self.online_solve_kwargs_without_rectification)
                 )
                 for (q, online_solve_kwargs) in enumerate(
                         self.online_solve_kwargs_without_rectification
                 ):
                     projection_reduced_snapshots = OnlineMatrix(n, n)
                     for (i, mu_i) in enumerate(self.snapshots_mu[:n]):
                         self.set_mu(mu_i)
                         projected_reduced_snapshot_i = self.solve(
                             n, **online_solve_kwargs)
                         for j in range(n):
                             projection_reduced_snapshots[
                                 j,
                                 i] = projected_reduced_snapshot_i.vector(
                                 )[j]
                     projection_reduced_snapshots_expansion[
                         q] = projection_reduced_snapshots
                     print("\t\tonline solve options " + str(
                         dict(self.
                              online_solve_kwargs_with_rectification[q])
                     ) + ": " + str(cond(projection_reduced_snapshots)))
                 self.operator[
                     "projection_reduced_snapshots"][:n, :
                                                     n] = projection_reduced_snapshots_expansion
             # Save and restore previous mu
             self.set_mu(bak_mu)
             self.operator["projection_reduced_snapshots"].save(
                 self.folder["reduced_operators"],
                 "projection_reduced_snapshots")
             return self.operator["projection_reduced_snapshots"]
         else:
             raise ValueError("Invalid stage in assemble_operator().")
     else:
         return EllipticCoerciveReducedProblem_DerivedClass.assemble_operator(
             self, term, current_stage)